



# GCSE (9–1) Physics A (Gateway Science) J249/03 Paper 3 (Higher Tier)



Sample Question Paper

### Date - Morning/Afternoon

Time allowed: 1 hour 45 minutes

#### You must have:

• the Data Sheet

Oxford Cambridge and RSA

#### You may use:

- · a scientific or graphical calculator
- a ruler



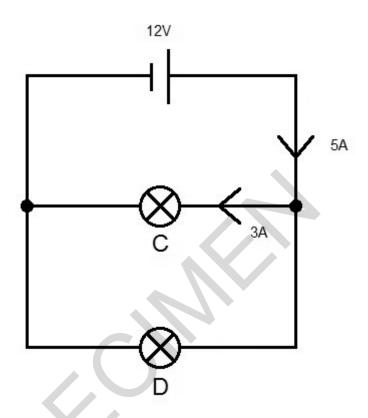
| First name       |                  |
|------------------|------------------|
| Last name        |                  |
| Centre<br>number | Candidate number |

#### **INSTRUCTIONS**

- Use black ink. HB pencil may be used for graphs and diagrams only.
- Complete the boxes above with your name, centre number and candidate number.
- · Answer all the questions.
- Write your answer to each question in the space provided.
- Additional paper may be used if required but you must clearly show your candidate number, centre number and question number(s).
- Do **not** write in the bar codes.

#### **INFORMATION**

- The total mark for this paper is 90.
- The marks for each question are shown in brackets [ ].
- Quality of extended responses will be assessed in questions marked with an asterisk (\*).
- This document consists of 28 pages.




#### **SECTION A**

Answer **all** the questions.

You should spend a maximum of 30 minutes on this section.

1 Look at the circuit diagram.



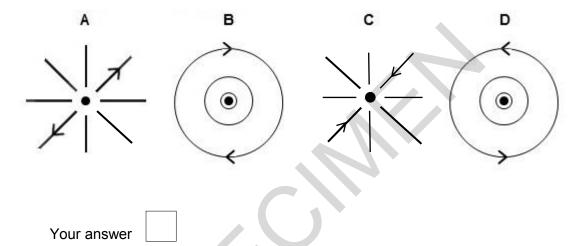
Use the formula **resistance = potential difference ÷ current** to calculate the resistance of bulb **D**.

| ٨      | 2 | $\cap$ |
|--------|---|--------|
| $\sim$ |   |        |

B  $4 \Omega$ 

**C** 6 Ω

**D** 8 Ω


Your answer

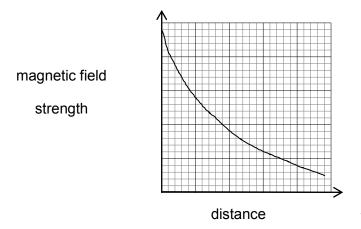
[1]

2 The diagram shows a wire carrying an electric current.



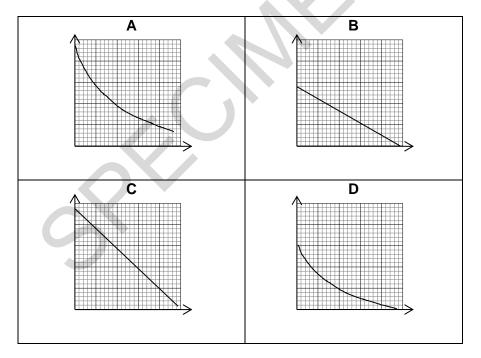
Which diagram shows the magnetic field viewed from above, with the current coming towards you?




- 3 Which of the following is **not** needed to generate a.c. in an alternator?
  - A changing magnetic field
  - B coil of wire
  - **C** commutator
  - **D** rotating magnet

| Your answer |  |
|-------------|--|

[1]


4 A student measures the magnetic field strength around a current carrying conductor at increasing distances from the conductor.

She plots her results.



The current in the conductor is decreased and a new graph plotted.

Which is the correct graph?



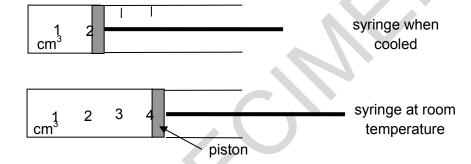
| Your | answer |  |
|------|--------|--|

[1]

|     |            |            |           | _     |
|-----|------------|------------|-----------|-------|
| 5 A | ∖ car trav | els 200 kn | n in four | hours |

If the car doubles its speed how long would it take to travel 50 km?

- A 0.5 hours
- **B** 1.0 hours
- C 2.0 hours
- **D** 4.0 hours


| Your answer |  |
|-------------|--|
| rour answer |  |
|             |  |

[1]

#### 6 A graduated syringe contains air.

It is put in a freezer to cool it down.

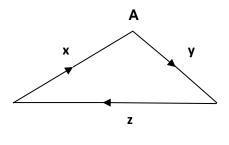
When it is removed from the freezer the piston has moved inwards.

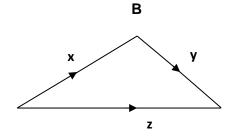


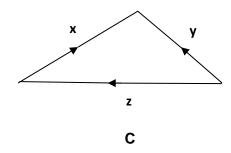
The density of the air in the syringe when cooled is 2.4 kg/m<sup>3</sup>.

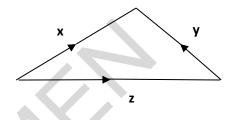
What was the density of the air at room temperature?

- $\mathbf{A}$  0.6 kg/m<sup>3</sup>
- **B** 1.2 kg/m<sup>3</sup>
- **C** 2.4 kg/m<sup>3</sup>
- **D**  $4.8 \text{ kg/m}^3$


| Your answer |  |
|-------------|--|


[1]


7 A body has three forces, **x**, **y** and **z** acting on it.


The body is in **equilibrium**.

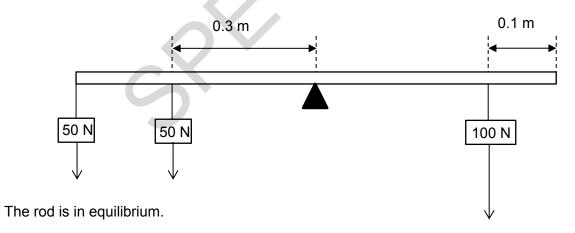
Which vector diagram represents this situation?









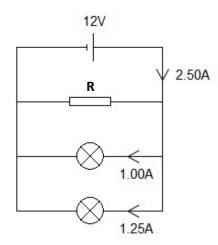

D

Your answer

[1]

[1]

**8** A uniform 1.0 m rod is pivoted at its centre.



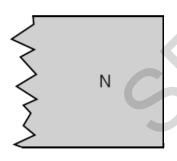

What is the value of the anti-clockwise moment about the pivot?

- **A** 10 Nm
- **B** 15 Nm
- **C** 40 Nm
- **D** 100 Nm

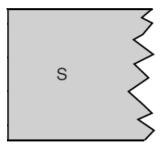
Your answer

9




Calculate the power dissipated by resistor R.

- **A** 30 W
- **B** 15 W
- **C** 12 W
- **D** 3 W


Your answer

[1]

**10** The diagram shows two poles of a magnet.



X



X is the position of a wire carrying a current perpendicularly into the paper.

Which direction does the wire move?

Α

В



С



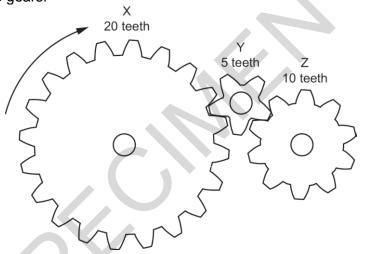
D



Your answer

[1]

11 A piece of metal has a volume of 2.0x10<sup>-5</sup> m<sup>3</sup>.


The density of it is  $8.0x10^3 \, kg/m^3$ .

What is its mass?

- **A** 2.5x10<sup>-3</sup> kg
- **B** 4.0x10<sup>-2</sup> kg
- **C** 1.6x10<sup>-1</sup> kg
- **D**  $1.6x10^3$  kg

| Your answer |  |
|-------------|--|

12 The diagram shows 3 gears.



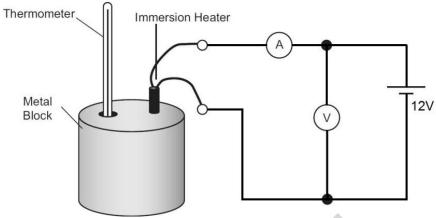
Gear **X** is rotated clockwise at 1.0 rotations per second.

Which row is the correct description of the movement of gear **Z**?

|   | direction of rotation | rotations per<br>second |
|---|-----------------------|-------------------------|
| Α | anticlockwise         | 0.5                     |
| В | anticlockwise         | 2.0                     |
| С | clockwise             | 0.5                     |
| D | clockwise             | 2.0                     |

| Your answer |  |
|-------------|--|

[1]


[1]

| 13 | A car | and driver with a total mass of 1000kg is travelling at 20 m/s.                       |     |
|----|-------|---------------------------------------------------------------------------------------|-----|
|    | The   | driver applies the brake and the car comes to a stop in 4 seconds.                    |     |
|    | Wha   | t is the mean force on the car?                                                       |     |
|    | Α     | 80 000 N                                                                              |     |
|    | В     | 5 000 N                                                                               |     |
|    | С     | 200 N                                                                                 |     |
|    | D     | 12.5 N                                                                                |     |
|    |       | answer                                                                                | [1] |
| 14 | The   | current in a 12 $\Omega$ resistor is 9.0 A.                                           |     |
|    | How   | much power is dissipated?                                                             |     |
|    | Α     | 108 W                                                                                 |     |
|    | В     | 972 W                                                                                 |     |
|    | С     | 1 296 W                                                                               |     |
|    | D     | 11 664 W                                                                              |     |
|    | Your  | answer                                                                                | [1] |
| 15 | How   | much work is done on a spring, of spring constant 16 N/m, when it is stretched 50 cm? |     |
|    | Α     | 2.0 J                                                                                 |     |
|    | В     | 8.0 J                                                                                 |     |
|    | С     | 12.5 J                                                                                |     |
|    | D     | 25.0 J                                                                                |     |
|    | You   | r answer                                                                              | [1] |

#### **SECTION B**

Answer **all** the questions.

16 A student completes an experiment to find the specific heat capacity of a metal.

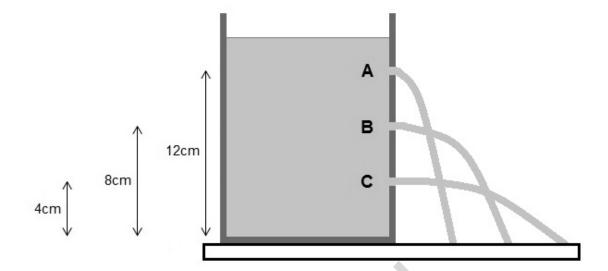


| (a) | (i)  | The student takes voltage and current measurements.                                     |     |
|-----|------|-----------------------------------------------------------------------------------------|-----|
|     |      | Suggest three other measurements they need to take?                                     |     |
|     |      |                                                                                         |     |
|     |      |                                                                                         |     |
|     |      |                                                                                         | [3] |
|     |      |                                                                                         |     |
|     | (ii) | Describe how these measurements could be used to determine the specific                 |     |
|     |      | heat capacity of the metal.                                                             |     |
|     |      |                                                                                         |     |
|     |      |                                                                                         |     |
|     |      |                                                                                         | [2] |
|     |      |                                                                                         |     |
| (b) | The  | value obtained from the experiment is much higher than expected.                        |     |
|     | Sug  | gest <b>two</b> reasons how this could have occurred and <b>two</b> improvements to the |     |
|     | expe | erimental procedure.                                                                    |     |
|     |      |                                                                                         |     |
|     |      |                                                                                         |     |
|     |      |                                                                                         |     |
|     |      |                                                                                         |     |
|     |      |                                                                                         |     |
|     |      |                                                                                         | [4] |

#### 17 A student rubs a balloon against a scarf.

(a)\*




| Suggest a way to show that the balloon is charged. What would you expect to see and |
|-------------------------------------------------------------------------------------|
| why?                                                                                |
|                                                                                     |
|                                                                                     |
|                                                                                     |
|                                                                                     |
|                                                                                     |
|                                                                                     |
|                                                                                     |
|                                                                                     |
|                                                                                     |

Describe how the balloon has become charged.

|     | answer: seconds                                                  | [3] |
|-----|------------------------------------------------------------------|-----|
|     |                                                                  |     |
|     |                                                                  |     |
|     |                                                                  |     |
|     | Show your working.                                               |     |
|     | Calculate how long this takes.                                   |     |
|     | A current of 40 mA transfers a charge of 3.6 C.                  |     |
| (b) | The rate of flow of electrical charge in a circuit is a current. |     |

|     |                                                                          | of water exerts the same   | •                         |  |  |  |  |
|-----|--------------------------------------------------------------------------|----------------------------|---------------------------|--|--|--|--|
|     | atmosphere whi                                                           | ch is ~120 km thick.       |                           |  |  |  |  |
|     | Suggest why.                                                             |                            |                           |  |  |  |  |
|     |                                                                          |                            |                           |  |  |  |  |
| (b) | A diver takes so                                                         | me pressure readings.      |                           |  |  |  |  |
|     | Their results are                                                        | e in the table below.      |                           |  |  |  |  |
|     |                                                                          | Depth of water (m)         | Pressure (standard units) |  |  |  |  |
|     |                                                                          | 0                          | 1                         |  |  |  |  |
|     |                                                                          | 10                         | 2                         |  |  |  |  |
|     |                                                                          | 20                         | 3                         |  |  |  |  |
|     |                                                                          | 30                         | 4                         |  |  |  |  |
|     |                                                                          | 40                         | 5                         |  |  |  |  |
|     |                                                                          | 50                         | 6                         |  |  |  |  |
|     | Use the data to describe the relationship between the depth of water and |                            |                           |  |  |  |  |
|     | pressure.                                                                |                            |                           |  |  |  |  |
|     | procedio.                                                                |                            |                           |  |  |  |  |
|     |                                                                          |                            |                           |  |  |  |  |
|     |                                                                          |                            |                           |  |  |  |  |
|     |                                                                          |                            |                           |  |  |  |  |
|     |                                                                          |                            |                           |  |  |  |  |
|     |                                                                          |                            |                           |  |  |  |  |
|     | Suggest why the                                                          | ere is pressure at 0 metro | es.                       |  |  |  |  |
| (c) |                                                                          |                            |                           |  |  |  |  |
| (c) |                                                                          |                            |                           |  |  |  |  |
| (c) |                                                                          |                            |                           |  |  |  |  |

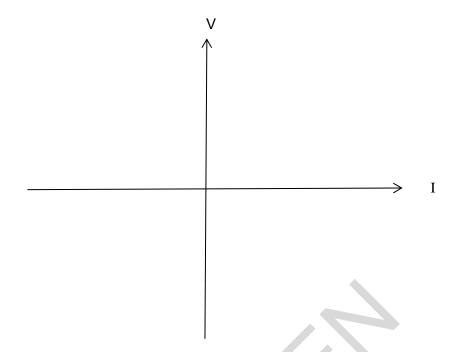
(d) A container of vegetable oil has 3 holes in it.



| The vegetable oil has a density of 9.1 x 10 <sup>2</sup> kg/m <sup>3</sup> . |      |
|------------------------------------------------------------------------------|------|
| Calculate the change in pressure from <b>A</b> to <b>B</b> .                 |      |
| Show your working and give your answer to 2 significant figures.             |      |
|                                                                              |      |
|                                                                              |      |
|                                                                              |      |
|                                                                              |      |
|                                                                              |      |
| answer: Pa                                                                   | [4]  |
| answer 1 a                                                                   | ניין |

## BLANK PAGE TURN OVER FOR THE NEXT QUESTION



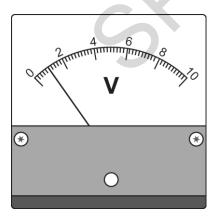

19 A student takes voltage and current measurements for four resistors.

The table shows the results from this experiment.

| Resistor | Voltage<br>(V) | Current<br>(A) | Resistance (Ω) |
|----------|----------------|----------------|----------------|
| Α        | 12.0           | 2.0            |                |
| В        | 6.0            | 1.5            |                |
| С        | 7.5            | 1.5            |                |
| D        | 8.0            | 2.0            |                |

| (a) | Whi  | ch two resistors have the same resistance value?                              |     |
|-----|------|-------------------------------------------------------------------------------|-----|
|     | Use  | the data to show this.                                                        |     |
|     |      |                                                                               |     |
|     |      |                                                                               |     |
|     |      |                                                                               | [2] |
|     |      |                                                                               |     |
| (b) | Cald | culate the maximum resistance that can be made using all four resistors.      |     |
|     |      |                                                                               |     |
|     |      |                                                                               |     |
|     |      |                                                                               |     |
|     | ans  | wer: $\Omega$                                                                 | [1] |
| (c) | (i)  | Draw a circuit diagram that could be used to find out how the resistance of a |     |
|     |      | filament bulb changes with current.                                           |     |
|     |      | Describe the readings you need to take.                                       |     |
|     |      |                                                                               |     |
|     |      |                                                                               |     |
|     |      |                                                                               |     |
|     |      |                                                                               |     |
|     |      |                                                                               |     |
|     |      |                                                                               |     |
|     |      |                                                                               |     |
|     |      |                                                                               | [4] |

(ii) Sketch the shape of the graph using the axes below.

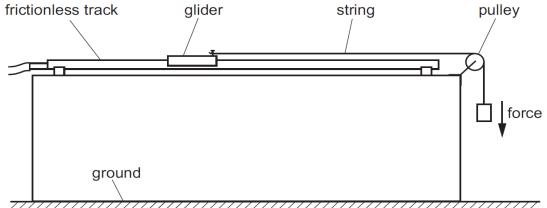



State how this graph can be used to calculate resistance at any specific value of current.

| [2]                  |
|----------------------|
| <br>L <del>Z</del> J |

(d) A voltmeter is used to measure the output voltages produced from the circuit.

The voltmeter is not connected to a circuit and not recording a voltage.




Name the error on the voltmeter and suggest how it should be dealt with.

.....

[2]

20 A student investigates the motion of a glider on a frictionless air track using the apparatus shown in the picture.



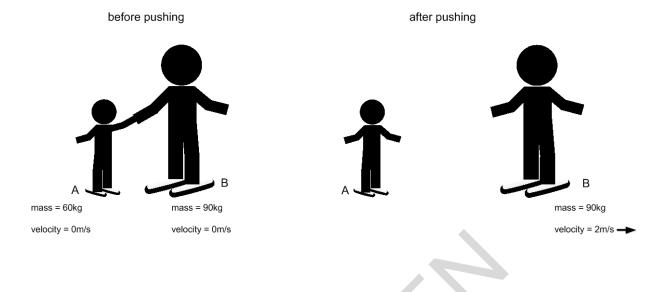
| -   | <u> </u>                                                               |
|-----|------------------------------------------------------------------------|
| . / |                                                                        |
| (i) | Explain how the student can use this apparatus to demonstrate Newton's |
|     | Second Law.                                                            |
|     | Include details of any additional equipment required.                  |
|     |                                                                        |
|     |                                                                        |
|     |                                                                        |
|     |                                                                        |
|     |                                                                        |
|     |                                                                        |
|     |                                                                        |
|     |                                                                        |
|     |                                                                        |

(ii) A 0.25 kg glider is pulled by a 1.0 N force.

Calculate the acceleration of the glider using the formula:

force = mass x acceleration

**answer:** ..... m/s<sup>2</sup> [1]


|            |               |             |                 |            | _             |  |
|------------|---------------|-------------|-----------------|------------|---------------|--|
| Force      | A 11 1        |             | ion (m/s²)      | NA         | _             |  |
| (N)        | Attempt       | Attempt     | Attempt         | Mean       |               |  |
| 1.0        | 3.8           | 2           | <b>3</b><br>3.7 | 2.0        | _             |  |
| 1.0<br>2.0 | 7.8           | 3.9<br>7.7  | 7.7             | 3.8<br>7.7 | -             |  |
| 3.0        | 11.2          | 11.4        | 11.6            | 11.4       | -             |  |
| 4.0        | 12.0          | 14.9        | 15.1            | 13.8       | -             |  |
| 5.0        | 19.0          | 18.9        | 19.1            | 19.0       | 4             |  |
| entify the | anomaly in th | explain how | the student o   |            | lealt with it |  |

[1]

| 21 | (a)                                                                | (i) | Write down   | the name   | of the rule which ca   | an be used to  | predict the     | direction of the force |
|----|--------------------------------------------------------------------|-----|--------------|------------|------------------------|----------------|-----------------|------------------------|
|    | perpendicular to a current-carrying conductor in a magnetic field. |     |              |            |                        |                |                 |                        |
|    |                                                                    |     |              |            |                        |                |                 |                        |
|    |                                                                    |     |              |            |                        |                |                 | [1]                    |
|    |                                                                    |     | A student pl | aces four  | wires of different le  | ngths perpen   | idicular to dif | ferent                 |
|    |                                                                    |     | magnetic fie | lds with o | different currents flo | wing.          |                 |                        |
|    |                                                                    |     | Look at the  |            |                        | J              |                 |                        |
|    |                                                                    |     |              | Wire       | Magnetic flux density  | Current<br>(A) | Length<br>(m)   |                        |
|    |                                                                    |     |              | Α          | <b>(T)</b><br>0.10     | 2.5            | 0.50            | -                      |
|    |                                                                    |     |              | В          | 0.15                   | 2.0            | 0.75            | 1                      |
|    |                                                                    |     |              | C<br>D     | 0.20<br>0.25           | 4.5<br>5.0     | 0.25<br>1.00    | -                      |
|    |                                                                    |     |              |            |                        |                |                 | [2]                    |
|    |                                                                    |     |              | 7          |                        |                |                 |                        |
|    | (b)                                                                | (i) | The student  | decides    | to build a model trai  | nsformer.      |                 |                        |
|    |                                                                    |     | The transfor | mer is a   | step-up transformer    | which double   | es the input v  | oltage.                |
|    |                                                                    |     | Describe ho  | w they co  | ould build this step-u | ıp transforme  | r in a science  | e laboratory.          |
|    |                                                                    |     |              |            |                        |                |                 |                        |
|    |                                                                    |     |              |            |                        |                |                 |                        |
|    |                                                                    |     |              |            |                        |                |                 |                        |
|    |                                                                    |     |              |            |                        |                |                 |                        |
|    |                                                                    |     |              |            |                        |                |                 | [4]                    |

|     | (ii) | Suggest one risk associated with this experiment and how it can be |            |
|-----|------|--------------------------------------------------------------------|------------|
|     |      | reduced.                                                           |            |
|     |      |                                                                    |            |
|     |      |                                                                    | [2]        |
| (c) | Dose | cribe how a microphone works.                                      |            |
| (C) | Desi | cribe now a microphone works.                                      |            |
|     | •••• |                                                                    |            |
|     |      |                                                                    | <b>501</b> |
|     |      |                                                                    | [2]        |

Two ice skaters A and B, at rest, start together on the ice.The ice skaters push apart and they move off in opposite directions.



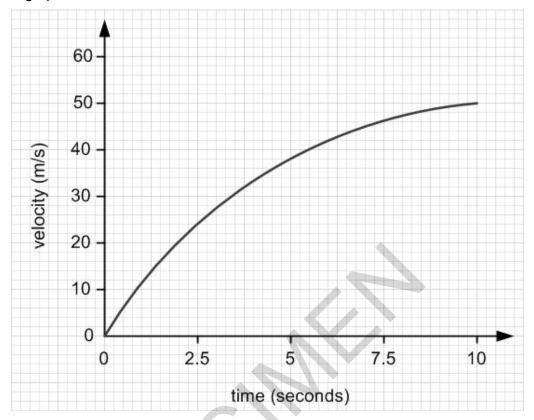
| (a) | State the law of conservation of momentum.                   |     |
|-----|--------------------------------------------------------------|-----|
|     |                                                              | F47 |
|     |                                                              | [1] |
| (b) | Use the data and your knowledge of momentum to calculate the |     |
|     | velocity of skater <b>A</b> after pushing.                   |     |
|     |                                                              |     |
|     |                                                              |     |
|     |                                                              | [2] |

A student researches potential and kinetic energy. She looks at some data from experiments with motion trolleys and energy.

The trolleys are stationary at the top of the ramp and have a gravitational potential energy of 8 J. Each trolley has a mass of 1 kg.

Look at the research data on the trolleys.

| Trolley | Velocity at the bottom of the ramp (m/s) |
|---------|------------------------------------------|
| W       | 3                                        |
| X       | 4                                        |
| Y       | 5                                        |
| Z       | 6                                        |


The student thinks the data is wrong.

| ose the data and your understanding of energy transfer to justify why trolley w has the most likely |
|-----------------------------------------------------------------------------------------------------|
| velocity and why X, Y and Z do not.                                                                 |
|                                                                                                     |
|                                                                                                     |
|                                                                                                     |
|                                                                                                     |
|                                                                                                     |
|                                                                                                     |
|                                                                                                     |
|                                                                                                     |

[4]

24 A free-fall skydiver falls from a plane and reaches terminal velocity after 15 seconds.

Look at the graph of her motion.



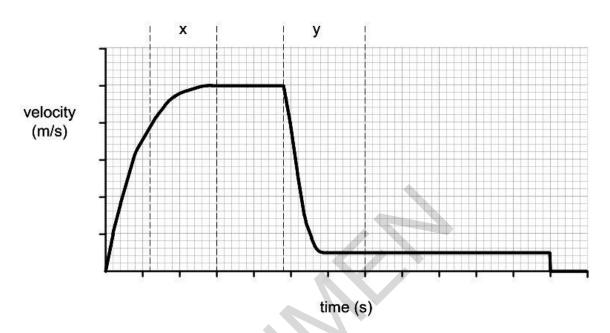
| (a) | Use the | graph to | o find | the | acceler | ation | at 5 | seconds |
|-----|---------|----------|--------|-----|---------|-------|------|---------|
|-----|---------|----------|--------|-----|---------|-------|------|---------|

| <br> | <br> |
|------|------|

**answer:** ..... m/s<sup>2</sup>

[3]

[2]


**(b)** Use the graph to find the distance travelled between 0 and 2.5 seconds.

.....

answer: ..... m

**(c)** A skydiver jumps from an aeroplane, falls towards the ground, opens her parachute and falls safely to earth.

Look at the graph of the velocity of the skydiver as she falls.



Look at these regions of the graph:

- x
- y

| ose ideas about forces to explain the motion during <b>x</b> and <b>y</b> . |           |
|-----------------------------------------------------------------------------|-----------|
|                                                                             |           |
|                                                                             |           |
|                                                                             |           |
|                                                                             |           |
|                                                                             |           |
|                                                                             |           |
| [6                                                                          | <b>5]</b> |

#### **END OF QUESTION PAPER**

#### **BLANK PAGE**



#### **BLANK PAGE**





#### Copyright Information:

Image reproduced by permission from George Retseck.www.georgeretseck.com

OCR is committed to seeking permission to reproduce all third-party content that it uses in the assessment materials. OCR has attempted to identify and contact all copyright holders whose work is used in this paper. To avoid the issue of disclosure of answer-related information to candidates, all copyright acknowledgements are reproduced in the OCR Copyright Acknowledgements booklet. This is produced for each series of examinations and is freely available to download from our public website (www.ocr.org.uk) after the live examination series.

If OCR has unwittingly failed to correctly acknowledge or clear any third-party content in this assessment material, OCR will be happy to correct its mistake at the earliest possible opportunity.

For queries or further information please contact the Copyright Team, First Floor, 9 Hills Road, Cambridge CB2 1GE.

OCR is part of the Cambridge Assessment Group; Cambridge Assessment is the brand name of University of Cambridge Local Examinations Syndicate (UCLES), which is itself a department of the University of Cambridge.