

GCSE

Mathematics (9-1)

Unit J560/06: Paper 6 (Higher Tier)

General Certificate of Secondary Education

Mark Scheme for November 2018

OCR (Oxford Cambridge and RSA) is a leading UK awarding body, providing a wide range of qualifications to meet the needs of candidates of all ages and abilities. OCR qualifications include AS/A Levels, Diplomas, GCSEs, Cambridge Nationals, Cambridge Technicals, Functional Skills, Key Skills, Entry Level qualifications, NVQs and vocational qualifications in areas such as IT, business, languages, teaching/training, administration and secretarial skills.

It is also responsible for developing new specifications to meet national requirements and the needs of students and teachers. OCR is a not-for-profit organisation; any surplus made is invested back into the establishment to help towards the development of qualifications and support, which keep pace with the changing needs of today's society.

This mark scheme is published as an aid to teachers and students, to indicate the requirements of the examination. It shows the basis on which marks were awarded by examiners. It does not indicate the details of the discussions which took place at an examiners' meeting before marking commenced.

All examiners are instructed that alternative correct answers and unexpected approaches in candidates' scripts must be given marks that fairly reflect the relevant knowledge and skills demonstrated.

Mark schemes should be read in conjunction with the published question papers and the report on the examination.

© OCR 2018

1. Annotations used in the detailed Mark Scheme.

Annotation	Meaning
\checkmark	Correct
×	Incorrect
BOD	Benefit of doubt
FT	Follow through
ISW	Ignore subsequent working (after correct answer obtained), provided method has been completed
MO	Method mark awarded 0
M1	Method mark awarded 1
M2	Method mark awarded 2
A1	Accuracy mark awarded 1
B1	Independent mark awarded 1
B2	Independent mark awarded 2
MR	Misread
SC	Special case
\land	Omission sign

These should be used whenever appropriate during your marking.

The **M**, **A**, **B** etc. annotations must be used on your standardisation scripts for responses that are not awarded either 0 or full marks. It is vital that you annotate these scripts to show how the marks have been awarded.

It is not mandatory to use annotations for any other marking, though you may wish to use them in some circumstances.

Subject-Specific Marking Instructions

- M marks are for <u>using a correct method</u> and are not lost for purely numerical errors.
 A marks are for an <u>accurate</u> answer and depend on preceding M (method) marks. Therefore MO A1 cannot be awarded.
 B marks are <u>independent</u> of M (method) marks and are for a correct final answer, a partially correct answer, or a correct intermediate stage.
 SC marks are for <u>special cases</u> that are worthy of some credit.
- 3. Unless the answer and marks columns of the mark scheme specify **M** and **A** marks etc., or the mark scheme is 'banded', then if the correct answer is clearly given and is <u>not from wrong working</u> full marks should be awarded.

Do not award the marks if the answer was obtained from an incorrect method, i.e. incorrect working is seen and the correct answer clearly follows from it.

Mark Scheme

4. Where follow through (**FT**) is indicated in the mark scheme, marks can be awarded where the candidate's work follows correctly from a previous answer whether or not it was correct.

Figures or expressions that are being followed through are sometimes encompassed by single quotation marks after the word *their* for clarity, e.g. FT 180 × (*their* '37' + 16), or FT 300 – $\sqrt{(their '5^2 + 7^2)}$. Answers to part questions which are being followed through are indicated by e.g. FT 3 × *their* (a).

For questions with FT available you must ensure that you refer back to the relevant previous answer. You may find it easier to mark these questions candidate by candidate rather than question by question.

- 5. Where dependent (**dep**) marks are indicated in the mark scheme, you must check that the candidate has met all the criteria specified for the mark to be awarded.
- 6. The following abbreviations are commonly found in GCSE Mathematics mark schemes.
 - cao means correct answer only.
 - **figs 237**, for example, means any answer with only these digits. You should ignore leading or trailing zeros and any decimal point e.g. 237000, 2.37, 2.370, 0.00237 would be acceptable but 23070 or 2374 would not.
 - **isw** means **ignore subsequent working** (after correct answer obtained).
 - nfww means not from wrong working.
 - oe means or equivalent.
 - rot means rounded or truncated.
 - **seen** means that you should award the mark if that number/expression is seen anywhere in the answer space, including the answer line, even if it is not in the method leading to the final answer.
 - soi means seen or implied.
- 7. Make no deductions for wrong work after an acceptable answer unless the mark scheme says otherwise, indicated for example by the instruction 'mark final answer'.
- 8. As a general principle, if two or more methods are offered, mark only the method that leads to the answer on the answer line. If two (or more) answers are offered, mark the poorer (poorest).
- 9. When the data of a question is consistently misread in such a way as not to alter the nature or difficulty of the question, please follow the candidate's work and allow follow through for **A** and **B** marks. Deduct 1 mark from any **A** or **B** marks earned and record this by using the MR annotation. **M** marks are not deducted for misreads.

Mark Scheme

- 10. Unless the question asks for an answer to a specific degree of accuracy, always mark at the greatest number of significant figures even if this is rounded or truncated on the answer line. For example, an answer in the mark scheme is 15.75, which is seen in the working. The candidate then rounds or truncates this to 15.8, 15 or 16 on the answer line. Allow full marks for the 15.75.
- 11. If the correct answer is seen in the body and the answer given in the answer space is a clear transcription error allow full marks unless the mark scheme says 'mark final answer' or 'cao'. Place the annotation ✓ next to the correct answer.

If the answer space is blank but the correct answer is seen in the body allow full marks. Place the annotation \checkmark next to the correct answer.

If the correct answer is seen in the working but a completely different answer is seen in the answer space, then accuracy marks for the answer are lost. Method marks would still be awarded. Use the M0, M1, M2 annotations as appropriate and place the annotation **x** next to the wrong answer.

- 12. Ranges of answers given in the mark scheme are always inclusive.
- 13. For methods not provided for in the mark scheme give as far as possible equivalent marks for equivalent work. If in doubt, consult your Team Leader.
- 14. Anything in the mark scheme which is in square brackets [...] is not required for the mark to be earned, but if present it must be correct.

Question		on	Answer	Marks	Part marks and guidance			
1	(a)		Points plotted at (21, 18) and (7, 8)	1		Tolerance ±1 mm		
	(b)		1:3	3	 B2 for 3 : 9 oe or answer 3 : 1 or B1 for 3 [dancers] or 9 [dancers] identified If 0 scored then SC1 for 4 : 8 seen and simplified to 1 : 2 	NOT from 4 : 12 May be on graph 4 : 12 simplified to 1 : 3 scores 0		
	(c)		The wedges at the front look bigger than those at the back oe	1		Comments should refer to the 3D nature of the pie chart e.g. It's tilted, slanted, seen from an angle etc. Ignore all references to missing angles, not being joined, etc. Mark the best bit unless contradicted		

C	Questi	on	Answer	Marks	Part marks and guidance			
2	(a)		47.5	4	 B1 for at least four of 10, 30, 45, 55, 70 M1 FT for Σ<i>mf</i> where <i>m</i> is a value within each group 10×5 + 30×8 + 45×37 + 55×47 + 70×3 soi by 50+240+1665+2585+210 or 4750 M1 FT dep on M1 for <i>their</i> 4750 ÷ <i>their</i> (5+8+37+47+3) 	May be implied by four correct products or 4750 FT their "midpoints" seen. M1 may be implied by Lower: 0+160+1480+2350+180 (4180) Upper: 100+320+1850+2820+240 (5330) Allow one error in calculation. Expect 100		
	(b)		Exact speeds for each vehicle are not recorded oe	1		Do not accept, "Because the mid-point is used" or comments on the method used. Accept e.g.: Specific speeds not given or We don't know the speeds The exact speed isn't given		

G	uestic	on	Answer	Marks	Part mar	ks and guidance
3			1.3 × 10 ¹⁴	5	B4 for 1.30 × 10 ¹⁴ or 1.29[6] × 10 ¹⁴ or 130 000 000 000 000 as final answers	For 5 marks and M marks, condone use of correctly rounded values in correct calculations
					or B3 for 1.3×10^n $(n \neq 0)$ or $1.29[6]$ $\times 10^{14}$ written in full or M3 for $3500 \div (2.7 \times 10^{-11})$ oe or B2 for $1.29[6] \times 10^n$ $(n \neq 0)$ or figs 13 OR M1 for figs 35 ÷ figs 27 soi by figs 129[6] B1 for 3500 or 2.7×10^{-14} oe or 3.5×10^3 seen	E.g. 129 600 000 000 000 0.000 000 000 000 027
4			$(4,7) \le (x) \le (4,8)$	2	B1 for each symbol	
4			(4.7) = (1) = (10)	L .		

Q	uestion	Answer	Marks	Part marks and guidance			
5	(a)	$180 \div 3.5 \times 11.2 = 576$ or $180 \div 3.5 = 51.4[]$ and $576 \div 11.2 = 51.4[]$ or $576 \div 180 = 3.2$ and $11.2 \div 3.5 = 3.2$	3	M2 for $180 \div 3.5 \times 11.2$ or $180 \div 3.5$ and $576 \div 11.2$ or $576 \div 180$ and $11.2 \div 3.5$ or M1 for $180 \div 3.5$ soi $51.4[]$ or $576 \div 11.2$ soi $51.4[]$ or $576 \div 180$ soi 3.2 or $11.2 \div 3.5$ soi 3.2	For M marks allow figs used eg M2 for $18 \div 350 \times 112$ If in two stages: For full marks, condone premature rounding if accurate and answer is stated as 576. E.g. 3 marks for $180 \div 3.5 = 51.4$ and 51.4×11.2 [= 575.68 or 575.7] = 576 (required) eg M2 for $180 \div 3.5 = 51.5$ and 51.5×11.2 = 576 Accept equivalent methods eg divisions inverted or correct use of lengths in other units.		
	(b)	No oe and correct explanation	2	B1 for $180 \div k \times 11.2$ where $k > 3.5$ leading to answer <576 or $[180 \div 3.5 =] 51.4$ and $180 \div k, k >$ 3.5 leading to answer <51.4() or Each cm on the map will be worth fewer km in real life oe	For full marks, clear conclusion and an explanation earning B1 is needed [180 ÷ 3.5 =] may be referred to in (a)		
	(c)	7500 cao	2	M1 for figs 18 ÷ figs 24 soi figs 75	If units included in answer max M1		

Q	uestic	on	Answer	Marks Part marks and guidance		ks and guidance
6			375	4	M3 for $1025 \div (5k + 15k + 21k) \times 15k$ oe or M2 for $1025 \div (5k + 15k + 21k)$ oe or M1 for two ratios with a common number of cashews implied by $5k$ (almonds) and $21k$ (peanuts) seen, k>0 or for 5 : 15 [: 21] or [5 :] 15 : 21 or 41 seen	M3 implied by 125, 375, 525 with 375 not selected
7	(a)		9	2	M1 for 15×0.62 , possibly soi by 9.3 If 0 scored, then SC1 for 15×0.41 leading to 6 as final answer	Condone "9 or 10" as final answer for 2 marks if correct working is shown.
	(b)	(i)	0.41 0.59 0.41 0.38 0.41 0.59	2	B1 for 0.38 and at least one 0.59 seen on correct branches	

G	Question		Answer	Marks	Part marks and guidance			
		(ii)	0.5216 or $\frac{326}{625}$	3	M2FT for (0.62 × <i>their</i> 0.59) + (<i>their</i> 0.38 × 0.41) oe	Condone 0.52 or 0.522 as final answer provided nfww		
					or M1FT for (0.62 × <i>their</i> 0.59) soi by 0.3658 oe or (<i>their</i> 0.38 × 0.41) soi by 0.1558 oe			
8	(a)	(i)	2	2	M1 for 'rise' ÷ 'run' e.g. 8 ÷ 4			
		(ii)	0	1				
	(b)		150	4	M3 for complete area $\left[\frac{4 \times 8}{2} + (10 \times 8) + \frac{(8+10) \times 6}{2}\right]$ or M2 for two areas $\frac{4 \times 8}{2}$ oe, (10×8) oe, or $\frac{(8+10) \times 6}{2}$ oe or M1 for one area $\frac{4 \times 8}{2}$ oe, (10×8) oe, or $\frac{(8+10) \times 6}{2}$ oe	For M2 combining a triangle and a rectangle into a trapezium $\frac{(14+10)\times 8}{2}$ counts as "two areas" Look for answers of 16, 80 and 54. Allow M marks for calculations from other suitable splitting of the areas		

J56	60/06
-----	-------

C	Question		Answer	Marks	Part marks and guidance		
9	(a)		A	1			
	(b)		С	1			
10				2	B1 for a generally increasing graph through (0, 0) or for correct shape not through (0, 0)	Condone straight line with positive gradient through (0,0) for B1	

Q	uestion	Answer	Marks	Part mar	ks and gu	idance	
11		12 nfww	5	B1 for 5x and x soi	sides	interior	exterior
				and	5	108.0	72.0
				W1 for $6x = 180.0e$	6	120.0	60.0
				$\mathbf{A1}$ for $\mathbf{x} = 30$	7	128.6	51.4
				and	8	135.0	45.0
				360	9	140.0	40.0
				M1 for $[n =]$ $\frac{1}{their 30}$	10	144.0	36.0
					11	147.3	32.7
					12	150.0	30.0
					13	152.3	27.7
				$\frac{\text{Allemative}}{M1} \text{ for } xn = 360 \text{ oe}$	14	154.3	25.7
				and	15	156.0	24.0
				M1 for $5xn = 180(n-2)$ oe	For first	M1 allow e	xterior = 360/ <i>n</i> but not
				and	just 360//	n	
				M1 for $5 \times 360 = 180(n-2)$ oe			
				and M1 for 10 n 2	Eliminate	es x	
				10110110 = 11 - 2			
				Alternative			
				M2 for use of two of	Can be ir	mplied fror	n a seen calculation or a
				[exterior angle =] 360/n	list showi	ing results	of at least two trials (see
				[interior angle =] $180(n-2)/n$	above)		
				interior + exterior = 180			
				M1 for use of one of the above			
				AND			
					Damara		
				W1 dep for checking interior = 5 ×	Eor full m	ent on W2 Darks allow	12 as final answor from
				$\Delta 1$ for interior = 150 and exterior -	trial and i	improveme	ent provided interior
				30 identified	angle = 1	50 and ex	terior angle = 30 are
					identified	in working]

Q	uestion	Answer	Marks	Part mar	ks and guidance
12		7.17 to 7.18 or 7.2 nfww	6	M3 for $x^2 - 3x - 30 = 0$ or M2 for $\frac{6}{2}(10 + x) = x^2$ oe or M1 for $\frac{6}{2}(10 + x)$ oe	Condone missing brackets for M1
				AND M2FT for $\frac{3 + \sqrt{(-3)^2 - 4 \times (-30)}}{2}$ or better or 7.17 to 7.18 and -4.18 to -4.17 or M1FT for either formula with at most two errors	FT from <i>their</i> 3 term quadratic Allow M2FT for $\frac{3 \pm \sqrt{(-3)^2 - 4 \times (-30)}}{2}$ or better Alternative by completing the square: M2FT for 1.5 + $\sqrt{32.25}$ or 1.5 $\pm \sqrt{32.25}$ or 7.17 to 7.18 and -4.18 to - 4.17 or M1FT for $(x - 1.5)^2 - 32.25$
13		$8\pi + t\pi + 16 - 2t$ oe including unsimplified expressions	3	B2 for two of $\frac{16\pi}{2}$ oe, $\frac{2t\pi}{2}$ oe, or $16 - 2t$ oe seen or B1 for one of $\frac{16\pi}{2}$ oe, $\frac{2t\pi}{2}$ oe, or $16 - 2t$ oe seen	Mark final answer Equivalent simplified expressions include: $\pi(8+t)+16-2t$ or $t(\pi-2)+8(\pi+2)$ Penalise use of 3.14 once e.g. 25.1 and 3.14 <i>t</i> scores B1

Q	Question		Answer	Marks	Part marks and guidance			
14	(a)		x = 0.191919 100x = 19.191919 99x = 19 $x = \frac{19}{99}$	3	M1 for 100 <i>x</i> = 19.191919 and M1 for 100 <i>x</i> – <i>x</i> = 19.191919 – 0.191919 or better	For full marks, clear step by step process must be evident Apply marks in a similar way to other methods e.g. M1 and M1 for 10000x – 100x = 1919.1919 – 19.1919		
	(b)		0.ੴ÷10 or "divide by 10" = 0.0ੴ	1 1 dep	Dependent on first mark	Answer only scores 0		
15			2.2667 and 2.3882	3	B2 for 2.2667 or for 2.2666or $\frac{34}{15}$ and 2.388 or M1 for $\frac{2^3}{30}$ + 2 soi by 2.2666 or 2.26 ⁸ or $\frac{34}{15}$	For 3 marks, answers must be on answer line or correctly identified as x_2 and x_3		

Question		Answer	Marks	Part marks and guidance			
		There could be £301 e.g. because 2635 ÷ 8.745 = 301[.3]	3	M2 for a calculation of (2625 to 2635) \div (8.745 to 8.755) oe correctly evaluated to an answer of 301() or for a calculation of (2632.245 to 2635) \div 301 oe correctly evaluated to an answer of 8.745 to 8.755 or for a calculation of 301 × (8.745 to 8.7541528) oe correctly evaluated to an answer of 2625 to 2635 or M1 for any further calculation of (2625 to 2635) \div (8.745 to 8.755) or (2625 to 2635) \div 301 or 301 × (8.745 to 8.755) or (2625 to 2635) \div 301 or 301 × (8.745 to 8.755) but not 2625 \div 8.755 or 2630 \div 8.75 or B1 for 2635, 2.635, 8.745 or 8745 seen	For full marks, their conclusion must follow from a relevant calculation which shows that 301 is a possible answer (either use of 301 and two weights in range, or an answer of more than 301 rounded down, and not an answer of less than 301 rounded up) Calculations may be done in grams as shown, or converted to kg. Common calculations for at least M2 include: 2635 ÷ 8.75 = 301.1() 2635 ÷ 8.745 = 301.3() Common calculations scoring only M1 include: 2625 ÷ 8.75 (= 300) 2630 ÷ 8.745 = 300.7()		

Question		on	Answer	Marks	Part marks and guidance		
17			$(\sqrt{6}, 2\sqrt{6})$ and $(\sqrt{6}, \sqrt{2}\sqrt{6})$	5	B4 for $(x =) \pm \sqrt{6}$ or one intersection		
					or M3 for $x^2 = 6$		
					or		
					M2 for $x^2 + 4x^2 = 30$ or $5x^2 = 30$		
					or		
					M1 for $x^2 + (2x)^2$	Condone missing brackets for M1	
18	(a)			3	B1 for general shape	Starting at max above the <i>x</i> axis, and completing at least one full cycle For full marks, it must be a curve and have correct curvature	
					B1 for max at +2, minimum at 0		
					B1 for max at <i>x</i> = 0, 360, 720		
	(b)		The maximum value of cosx +1 is 2 and 2.7 is greater than 2 oe	1		More 'work' may be correctly done before an equivalent conclusion, e.g. $\cos x = 1.7$, and max value of $\cos x$ is 1 and 1.7 is greater than 1.	

Question		on	Answer	Marks	Part marks and guidance		
19			32.2 to 32.3	6	M2 for $x^2 - 10x + 19 = 0$ oe	Accept 32 after full correct method	
					M1 for $9^2 = 10^2 + x^2 - 2 \times 10 \times x \times \cos 60$	Use of cosine rule	
					AND M1FT for $\frac{10 \pm \sqrt{10^2 - 4 \times 1 \times 19}}{2}$	FT their quadratic = 0 <u>Alternative</u> : M1 for $(x - 5)^2 - 6 = 0$	
					A1 for $x = 7.45$ or $5 + \sqrt{6}$	Ignore 2.55 or $5-\sqrt{6}$	
					AND		
					M1 for $\frac{1}{2} \times 10 \times their$ 7.45×sin60 oe	<i>Their</i> 7.45 should be from cosine rule followed by quadratic (not from measuring etc.)	
					Alternative	Use of sine rule	
					M1 for $\frac{\sin 60}{9} = \frac{\sin B}{10}$ oe M1 for $\sin B = \frac{10}{9} \sin 60$ or better A1 for $B = 74.2()$	Isolates sin <i>B</i>	
					M1 for <i>A</i> = 180 – 60 – <i>their</i> 74.2 soi by 45.8	<i>Their</i> 45.8 should be from sine rule followed	
					AND M1 for $\frac{1}{2} \times 9 \times 10 \times their \sin 45.8$	by 180 – <i>their</i> sine rule answer (not from measuring etc.)	

Question		on	Answer	Marks	Part marks and guidance		
20	(a)		eg. $\begin{pmatrix} 1 \\ 1 \end{pmatrix}$ and $\begin{pmatrix} 3 \\ 2 \end{pmatrix}$	3	B2 for one correct answer or M1 for any multiple of $\begin{pmatrix} 2\\ 1 \end{pmatrix}$ seen	Other correct answers include: $ \begin{pmatrix} 5\\3 \end{pmatrix}, \begin{pmatrix} -1\\0 \end{pmatrix}, \begin{pmatrix} -3\\-1 \end{pmatrix}, \begin{pmatrix} -7\\-3 \end{pmatrix}, \begin{pmatrix} -9\\-4 \end{pmatrix}, \begin{pmatrix} -11\\-5 \end{pmatrix}, \\ \begin{pmatrix} -13\\-6 \end{pmatrix} \text{and} \begin{pmatrix} -15\\-7 \end{pmatrix} $	
						For others, check that top + 5 is double bottom + 2	
	(b)		<i>m</i> = -2, <i>n</i> = 4	5	B1 for $\begin{pmatrix} 4m \\ m \end{pmatrix}$ or $\begin{pmatrix} 5n \\ 2n \end{pmatrix}$ soi and M1 for $4m + 5n = 12$ or $m + 2n = 6$ and M1 for multiplication by scalar(s) to equate coefficients in <i>m</i> or <i>n</i> or reduction to one variable by substitution e.g. $4(6 - 2n) + 5n = 12$ and M1 for elimination or simplification to 3m = -6 or $3n = 12$ oe		

Question		Answer	Marks	Part marks and guidance		
21		5 nfww and after $\frac{5(x+5)(x-7)}{(x+5)(x-7)}$ seen	6	B1 for $(x + 5)(x - 7)$ or $x^2 + 5x - 7x - 35$ or better seen as a common denominator of the first two fractions AND	Condone missing final bracket.	
				B3 for numerator $5x^2 - 10x - 175$ or B2 for numerator $5x^2 - 10x + 125$ or M1 for $5x(x - 7)$ and $25(x + 5)$	Condone numerators written without any denominators or with an incorrect common denominator	
				AND		
				M1 for $5(x^2 - 2x - 35)$ or $(5x + 25)(x - 7)$ or $(x + 5)(5x - 35)$ or $5(x + 5)(x - 7)$		

OCR (Oxford Cambridge and RSA Examinations) The Triangle Building Shaftesbury Road Cambridge CB2 8EA

OCR Customer Contact Centre

Education and Learning

Telephone: 01223 553998 Facsimile: 01223 552627 Email: <u>general.qualifications@ocr.org.uk</u>

www.ocr.org.uk

For staff training purposes and as part of our quality assurance programme your call may be recorded or monitored

Oxford Cambridge and RSA Examinations is a Company Limited by Guarantee Registered in England Registered Office; The Triangle Building, Shaftesbury Road, Cambridge, CB2 8EA Registered Company Number: 3484466 OCR is an exempt Charity

OCR (Oxford Cambridge and RSA Examinations) Head office Telephone: 01223 552552 Facsimile: 01223 552553

