

GCSE MATHEMATICS 8300/2H

Higher Tier Paper 2 Calculator

Mark scheme

June 2019

Version: 1.0 Final

Mark schemes are prepared by the Lead Assessment Writer and considered, together with the relevant questions, by a panel of subject teachers. This mark scheme includes any amendments made at the standardisation events which all associates participate in and is the scheme which was used by them in this examination. The standardisation process ensures that the mark scheme covers the students' responses to questions and that every associate understands and applies it in the same correct way. As preparation for standardisation each associate analyses a number of students' scripts. Alternative answers not already covered by the mark scheme are discussed and legislated for. If, after the standardisation process, associates encounter unusual answers which have not been raised they are required to refer these to the Lead Assessment Writer.

It must be stressed that a mark scheme is a working document, in many cases further developed and expanded on the basis of students' reactions to a particular paper. Assumptions about future mark schemes on the basis of one year's document should be avoided; whilst the guiding principles of assessment remain constant, details will change, depending on the content of a particular examination paper.

Further copies of this mark scheme are available from aga.org.uk

AQA retains the copyright on all its publications. However, registered schools/colleges for AQA are permitted to copy material from this booklet for their own internal use, with the following important exception: AQA cannot give permission to schools/colleges to photocopy any material that is acknowledged to a third party even for internal use within the centre.

Glossary for Mark Schemes

GCSE examinations are marked in such a way as to award positive achievement wherever possible. Thus, for GCSE Mathematics papers, marks are awarded under various categories.

If a student uses a method which is not explicitly covered by the mark scheme the same principles of marking should be applied. Credit should be given to any valid methods. Examiners should seek advice from their senior examiner if in any doubt.

М	Method marks are awarded for a correct method which could lead to a correct answer.
Α	Accuracy marks are awarded when following on from a correct method. It is not necessary to always see the method. This can be implied.
В	Marks awarded independent of method.
ft	Follow through marks. Marks awarded for correct working following a mistake in an earlier step.
SC	Special case. Marks awarded for a common misinterpretation which has some mathematical worth.
M dep	A method mark dependent on a previous method mark being awarded.
B dep	A mark that can only be awarded if a previous independent mark has been awarded.
oe	Or equivalent. Accept answers that are equivalent.
	eg accept 0.5 as well as $\frac{1}{2}$
[a, b]	Accept values between a and b inclusive.
[a, b)	Accept values a ≤ value < b
3.14	Accept answers which begin 3.14 eg 3.14, 3.142, 3.1416
Use of brackets	It is not necessary to see the bracketed work to award the marks.

Examiners should consistently apply the following principles

Diagrams

Diagrams that have working on them should be treated like normal responses. If a diagram has been written on but the correct response is within the answer space, the work within the answer space should be marked. Working on diagrams that contradicts work within the answer space is not to be considered as choice but as working, and is not, therefore, penalised.

Responses which appear to come from incorrect methods

Whenever there is doubt as to whether a student has used an incorrect method to obtain an answer, as a general principle, the benefit of doubt must be given to the student. In cases where there is no doubt that the answer has come from incorrect working then the student should be penalised.

Questions which ask students to show working

Instructions on marking will be given but usually marks are not awarded to students who show no working.

Questions which do not ask students to show working

As a general principle, a correct response is awarded full marks.

Misread or miscopy

Students often copy values from a question incorrectly. If the examiner thinks that the student has made a genuine misread, then only the accuracy marks (A or B marks), up to a maximum of 2 marks are penalised. The method marks can still be awarded.

Further work

Once the correct answer has been seen, further working may be ignored unless it goes on to contradict the correct answer.

Choice

When a choice of answers and/or methods is given, mark each attempt. If both methods are valid then M marks can be awarded but any incorrect answer or method would result in marks being lost.

Work not replaced

Erased or crossed out work that is still legible should be marked.

Work replaced

Erased or crossed out work that has been replaced is not awarded marks.

Premature approximation

Rounding off too early can lead to inaccuracy in the final answer. This should be penalised by 1 mark unless instructed otherwise.

Continental notation

Accept a comma used instead of a decimal point (for example, in measurements or currency), provided that it is clear to the examiner that the student intended it to be a decimal point.

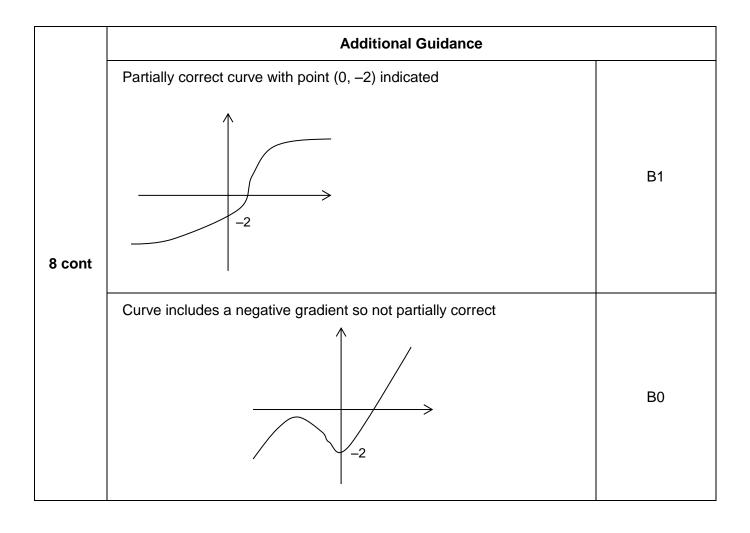
Question	Answer	Mark	Comments	
	(-1, 6)	B1		
1	Ad	ditional G	Guidance	
	11.5 m ≤ height < 12.5 m	B1		
2	Additional Guidance			
	5:2	B1		
3	Additional Guidance			
		Γ	7	
	A∩B	B1		
4	Ad	ditional G	Guidance	

Question	Answer	Mark	Comments	
	Arc, centre A, radius 4 cm on grid	B1	at least a quarter-circle ± 2 mm radius ignore any other arcs	
	Correct straight line equidistant from <i>B</i> and <i>C</i>	B1	their line must intersect any two of the five grid vertices (0, 3), (3, 4), (6, 5), (9, 6), (12, 7) ± 2 mm	
	Correct enclosed region identified	B1	± 2 mm for the line at (0, 3), (6, 5) and the arc at (6, 6), (2, 10) region may be identified by labelling R or by shading implies B3	
	Ac	Iditional G	Guidance	
5	R	В	B1B1B1	
	Arc must be drawn using compasses	st and third marks		
	If a quarter-circle is in tolerance, ign	t of the arc for first B1		
	Grid points are based on the origin b	m left		
	Use (6, 5) not the intersection of the	arc and th	e line to test the region	
	Lines may be dotted			

Question	Answer	Mark	Commer	nts	
	Alternative method 1				
	18 ÷ 36 or 0.5 or 30	M1	oe implied by 3.5 or 3 h 30 or 210 seen) min or 3.3(0)	
	$\frac{200-18}{4-\text{their }0.5} \text{ or } \frac{182}{3.5}$ or $\frac{200-18}{4\times60-\text{their }30} \text{ or } \frac{182}{210}$ or 0.86(6) or 0.87	M1dep	oe method for miles per minute implied by $\frac{182}{3 \text{ h } 30 \text{ min}}$	·	
	52	A1			
	Alternative method 2				
6	18 ÷ 36 or 0.5 or 30	M1	implied by 7		
	$\frac{200}{4} + \frac{50 - 36}{7}$ or $50 + 2$	M1dep	oe		
	52	A1			
	Additional Guidance				
	Allow the first mark even if not subsequently used				
	Ignore units for the M marks				
	Answer 0.86(6) or 0.87			M1M1A0	
	Answer 0.86(6) or 0.87 with mph crossed out and replaced by miles per min oe			M1M1A1	
	Working for 52 then (52 + 36) ÷ 2			M1M1A0	
	NB 50 + 2 = 52 from 200 ÷ 4 = 50 and 36 ÷ 18 = 2			Zero	

Question	Answer	Mark	Comments		
	Alternative method 1				
	8 ² or 64 and 17 ² or 289	M1			
	$\sqrt{17^2 - 8^2}$ or $\sqrt{225}$ or 15	M1dep	oe implies M2 may be seen on diagram		
	8 x 3 x their 15 or 24 x their 15	M1dep	dep on M2 oe eg (8 + 16) × their 15 or $0.5 \times 8 \times$ their 15×6		
	360	A1	SC2 [448.8, 456]		
	Alternative method 2				
	$\cos C = \frac{8}{17}$ or $C = [61.9, 62]$	M1	may be seen on diagram		
7	17 × sin their [61.9, 62] or [14.9, 15.1]	M1dep	may be seen on diagram oe eg 8 × tan their [61.9, 62]		
	8 × 3 × their [14.9, 15.1] or 24 × their [14.9, 15.1] or [357.6, 362.4]	M1dep	dep on M2 oe eg (8 + 16) × their [14.9, 15.1] or 0.5 × 8 × their [14.9, 15.1] × 6		
	360	A1	SC2 [448.8, 456]		
	Alternative method 3				
	$\sin A = \frac{8}{17}$ or $A = [28, 28.1]$	M1	may be seen on diagram		
	17 × cos their [28, 28.1] or [14.9, 15.1]	M1dep	may be seen on diagram oe eg 8 ÷ tan their [28, 28.1]		
	8 × 3 × their [14.9, 15.1] or 24 × their [14.9, 15.1] or [357.6, 362.4]	M1dep	dep on M2 oe eg (8 + 16) × their [14.9, 15.1] or 0.5 × 8 × their [14.9, 15.1] × 6		
	360	A1	SC2 [448.8, 456]		

Alternative method and Additional Guidance continued on the next page


Question	Answer	Mark	Comments		
	Alternative method 4				
	$\cos C = \frac{8}{17}$ or $C = [61.9, 62]$	M1	may be seen on diagram	1	
	$\frac{1}{2} \times 8 \times 17 \times \text{sin their [61.9, 62]}$ or [59.9, 60.1]	M1dep	oe		
	6 × their [59.9, 60.1] or [357.6, 362.4]	M1dep	oe		
	360	A1	SC2 [448.8, 456]		
7 cont	Ad				
	15 without a contradictory value for A method 1, even if not subsequently u	M1M1			
	$\sqrt{17^2 + 8^2}$	M1M0			
	3 rd M1 is for the total area and may b using a trapezium + a triangle				
	3 rd M1 is for the total area so further				
	eg 360 seen followed by 360 – 60, answer 300			M1M1M0A0	
	May use sine rule or cosine rule but must reach AB = to award the second M1 in Alt 2 or 3				

Answer	Mark	Comments			
Fully correct curve and point (0, -2) indicated	B2	B1 fully correct curve or partially correct curve with point (0, -2) indicated			
Ado	ditional G	uidance			
A partially correct curve must					
start in the 3rd quadrant and finish through the 4th quadrant	n in the 1s	t quadrant, passing			
not include a section with negative	e gradient				
A fully correct curve must					
have only a decreasing gradient to	if the y-axis				
have only an increasing gradient to the right of the <i>y</i> -axis					
Condone a positive gradient at the y-	intercept				
Condone straight line segments at ea	ach end of	the curve			
Fully correct curve with y-intercept la	belled –2	B2			
Partially correct curve with <i>y</i> -intercept labelled –2					
y-intercept labelled (-2, 0) is incorrec	t and can	score a maximum of B1			
Ignore any numbers on the axes other	er than the	y-intercept			
y-intercept $(0, -2)$ stated does indicate the point $(0, -2)$					
	Fully correct curve and point (0, -2) indicated Add A partially correct curve must start in the 3rd quadrant and finish through the 4th quadrant not include a section with negative have all the properties of a partially have only a decreasing gradient to have only an increasing gradient to have only an increasing gradient at the y-Condone straight line segments at each Fully correct curve with y-intercept late Partially correct curve with y-intercept y-intercept labelled (-2, 0) is incorrect land properties of a partially correct curve with y-intercept late labelled (-2, 0) is incorrect land properties of a partially correct curve with y-intercept labelled (-2, 0) is incorrect land properties of a partially correct curve with y-intercept labelled (-2, 0) is incorrect land properties of a partially correct curve with y-intercept labelled (-2, 0) is incorrect land properties of a partially correct curve with y-intercept labelled (-2, 0) is incorrect land properties of a partially correct curve with y-intercept labelled (-2, 0) is incorrect land properties of a partially correct curve with y-intercept land properties of a partially correct curve with y-intercept land properties of a partially correct curve with y-intercept land properties of a partially correct curve with y-intercept land properties of a partially correct curve with y-intercept land properties of a partially correct curve with y-intercept land properties of a partially correct curve with y-intercept land properties of a partially correct curve with y-intercept land properties of a partially correct curve with y-intercept land properties of a partially properties of a partial	Fully correct curve and point (0, -2) indicated Additional G A partially correct curve must start in the 3rd quadrant and finish in the 1s through the 4th quadrant not include a section with negative gradient have all the properties of a partially correct chave only a decreasing gradient to the left of have only an increasing gradient to the left of the condone straight line segments at each end of Fully correct curve with y-intercept labelled -2 Partially correct curve with y-intercept labelled -2 y-intercept labelled (-2, 0) is incorrect and can lignore any numbers on the axes other than the			

Additional Guidance continues on the next two pages

	Additional Guidance		
	Unlabelled notches do not indicate the point (0, -2)		
	A table of values does not indicate the point (0, -2)		
	Graph consisting only of straight lines	В0	
	A fully correct curve but point (0, -2) is not indicated		
		B1	
8 cont	Partially correct curve with point (0, -2) indicated		
8 cont	2	B1	
	Fully correct curve with point (0, -2) indicated		
	y-intercept (0, -2)	B2	

Additional Guidance continues on the next page

Question	Answer	Mark	Comments	
	continuous grouped	B1	both circled	
9(a)	Ac	lditional G	uidance	

	Alternative method 1			
9(b)	380 ÷ 2 or (380 + 1) ÷ 2 or 381 ÷ 2 or 190 or 190.5 or 191	M1	oe eg $\frac{59 + 158 + 106 + 2}{2}$ may be seen by the table	
	$2 < t \le 4$ with 190 or 190.5 or 191 seen Alternative method 2	A1		
	$2 < t \le 4$ with $59 + 158 - 106 - 45 - 12 = 54$ seen	B2	oe calculation eg 217 – 163 = 54 B1 59 + 158 – 106 – 45 – 12 = 54 oe	
	Additional Guidance			
	2 < t ≤ 4 with 190 or 190.5 or 191 not seen			M0A0
	Condone 2 – 4 in both or one of the spaces on answer line if 190 or 190.5 or 191 seen			M1A1
	Condone missing brackets if recovered			
	Alt 2 54 with calculation not seen			В0
	Alt 2 2 < $t \le 4$ and 54 with calculation not seen			В0

Question	Answer	Mark	Comments	
	$\frac{45+12}{380}$ or $\frac{57}{380}$ or $\frac{3}{20}$ or 0.15 or $100 \div \frac{380}{57}$ or $57 \div 3.8$	M1	oe proportion or calcula must use 380	tion
	15	A1		
	Additional Guidance			
9(c)	$1 - \frac{59 + 158 + 106}{380}$ or $1 - \frac{323}{380}$ or $1 - \frac{17}{20}$ or $1 - 0.85$			M1
	Correct proportion seen even if not subsequently used			M1A0
	Do not allow misreads of 380			
	Build-up			
	eg 10% = 380 ÷ 10 or 38			
	$5\% = 38 \div 2$ or 19			
	38 + 19 = 57			
	is M0A0 unless answer 15			

Question	Answer	Mark	Comme	nts
	-1 0 1 2	В3	B2 three correct values incorrect values or -3 -2 -1 0 1 2 and or interval that contains on -1 0 1 2 B1 -3 -2 -1 0 1 2 or -1 0 1 2 3 4 5 SC2 answer 2 3 4 5	-1 0 1 2 3 4 5
	Additional Guidance			
10	Examples of intervals that contain only the integers -1 0 1 2 $-1 \le x \le 2$ or $[-1, 2]$ or $-2 < x < 3$ or $(-2, 3)$			
	-1 0 1 2 3 4 5 may be shown as an interval that contains only these integers eg $-1 \leqslant x < 6$ or $[-1, 6)$			
	Intervals can be shown on a number line			
	-3 -2 -1 0 1 2 can not be shown as an interval or on a number line			
	Lists may be in any order eg 1 2 3 4 5 -1 0			B1
	Condone repeats in lists eg -1 0 1 1 2			В3
	Ignore commas/and/or between numbers in lists			
	-3 -2 -1 0 1 2 3 4 5 with no of	ther valid	working	В0

Question	Answer	Mark	Comment	s	
	Alternative method 1				
	(65% =) $\frac{13}{20}$ or 7:13	M1			
	13	A1	must be selected as the a	nswer	
	Alternative method 2				
	$(100 - 35) \div 35 \times 7$ or $7 \div 35 \times 100 - 7$ or $20 - 7$	M1	oe eg $35 \div 7 = 5$ and 69	5 ÷ 5	
	13	A1	must be selected as the a	nswer	
	Alternative method 3				
	$\frac{35}{7} \times n = 100 - 35$	M1	oe equation $eg \frac{7}{n} = \frac{35}{100 - 35}$		
11	or $5n = 65$	IVII	or $35n = 455$		
	13	A1	must be selected as the a	nswer	
	Additional Guidance				
	35 : 65 with no other valid working			MO	
	Condone answer £13			M1A1	
	Answer 13% or 13 <i>n</i>			M1A0	
	65% = 0.65			MO	
	Alt 2 65 ÷ 35 = 1.9				
	$1.9 \times 7 = 13.3$ (evidence of premature approximation)			M1	
	Answer 13			A0	
	Alt 2 65 ÷ 35 = 1.9			M1	
	1.9 x 7 = 13 (assume full calculator value used)			A1	

Question	Answer	Mark	Comments	
	0.3	B1		
12		Additional G	Buidance	

	Alternative method 1		
	Any three of [9.5, 10.5] × 22 or [209, 231] and [29.5, 30.5] × 9 or [265.5, 274.5] and [49.5, 50.5] × 6 or [297, 303] and [69.5, 70.5] × 3 or [208.5, 211.5] or 1000	M1	
13	(their [209, 231] + their [265.5, 274.5] + their [297, 303] + their [208.5, 211.5]) ÷ 40 or 1000 ÷ 40	M1dep	oe condone bracket error if working seen eg 220 + 270 + 300 + 210 ÷ 40
	25	A1	
	$\frac{35}{\text{their } 25}$ or $\frac{7}{5}$ or 1.4	M1	oe eg 1 + $\frac{35 - \text{their } 25}{\text{their } 25}$
	140	A1ft	ft their 25 with 3rd M1 scored

Mark scheme and Additional Guidance continue on the next two pages

Question	Answer	Mark	Comments		
	Alternative method 2				
13 cont	Any three of [9.5, 10.5] × 22 or [209, 231] and [29.5, 30.5] × 9 or [265.5, 274.5] and [49.5, 50.5] × 6 or [297, 303] and [69.5, 70.5] × 3 or [208.5, 211.5] or 1000	M1			
	35 × 40 or 1400	M1			
	1000 and 1400	A1			
	$\frac{\text{their } 1400}{\text{their } 1000}$ or $\frac{7}{5}$ or 1.4	M1dep	oe eg 1 + their 1400 – their 1000 their 1000 dep on M2		
	140	A1ft	ft their 1400 and their 1000 with M3 scored		

Additional Guidance is on the next page

	Additional Guidance	
	Alt 1 Correct products seen in the table but a different method not using their products used for the mean shown in the working lines	
	eg 40 ÷ 4 = 10 can score a maximum of M0M0A0M1A1ft	
	Alt 1 1000 ÷ 4 (= 250) is not a misread	
	NB The dependency of the M marks and the requirement for applying A1ft are different for the two alternative methods	
	Alt 1 3rd M1	
	Allow any number for their 25 (unless it contradicts their mean)	
13 cont	Alt 1 3rd M1 and A1ft	
	If there is a mean for the boys allow the M mark to be implied by a correct ft answer	
	eg from a mean of 250 allow M1A1ft for 14%	
	For A1ft allow answers to the nearest whole number or better	
	Further work after working out the percentage is 3rd M0	
	eg Mean = 25	M1M1A1
	$\frac{35}{\text{their } 25} \times 100 = 140$	
	140 – 100 = 40 Answer 40	M0A0

Question	Answer	Mark	Comments		
	(Ali) $5 \times 4 \times 3$ or 60 or (Mel) $4 \times 3 \times 2$ or 24	M1	oe eg (Ali) 5 x 12 or (Mel) 4!	
	$5 \times 4 \times 3 - 4 \times 3 \times 2$ or 60 - 24	M1dep	oe implies M2		
14(a)	36 with no incorrect method seen	A1	SC1 answer 61		
	Ad	ditional G	Guidance		
	Ignore any listing of possible codes				
	48 – 12 = 36 (incorrect method seen)			M0M0A0	
	1st M1 Further work eg1 60 followed by 60×3 eg2 $6 \times 4 = 24$ followed by $24 \times 2 = 4$	18		МО	
	It is bigger than my answer to part (a)				
	It is smaller than my answer to part (a)	B1			
14(b)	It is the same as my answer to part (a)				

Additional Guidance

Question	Answer	Mark	Comments
15	$y = -\frac{3}{2}x + 3$	B4	oe eg $2y + 3x = 6$ or $y = -1.5x + 3$ B3 $-\frac{3}{2}x + 3$ or gradient $= -\frac{3}{2}$ stated or equation of line with gradient $-\frac{3}{2}$ B2 scales on both axes identified correctly or scale on one axis identified correctly and correct gradient of L for their two scales seen B1 scale on one axis identified correctly or correct gradient of L for their two scales seen SC2 $y = -\frac{3}{4}x + 3$ oe or $y = \frac{3}{2}x + 3$ oe SC1 $-\frac{3}{4}x + 3$ or gradient $= -\frac{3}{4}$ stated or equation of line with gradient $-\frac{3}{4}$
	Additional Guidance		
	Examples of scale on y-axis identified intersection of $y = x - 1$ with y-axis		
	or intersection of line L with <i>y</i> -axis late or equation of line with <i>y</i> -intercept 3		
	Examples of scale on x -axis identified intersection of $y = x - 1$ with x -axis or intersection of line L with x -axis la		

Question	Answer	Mark	Comme	nts
	$\frac{1}{2} \times 14 \times AC = 80.5$	M1	oe eg $7AC = 80.5$ any letter for AC	
	$\frac{80.5 \times 2}{14}$ or $\frac{161}{14}$ or 11.5	M1dep	oe eg $\frac{80.5}{7}$ implies M2 may be seen on diagram	า
	$\frac{1}{2}$ × 19 × their 11.5 × sin 36 or 64.21 or 64.22 or 64	M1	oe 64.21 or 64.22 or 64 incorrect formula used	4 scores M3 if no
-	64.2 with no incorrect formula used	A1		
	Add	ditional G	Guidance	
	Answer 64.2 with no incorrect working	g		M3A1
	11.5 scores M2 even if not subsequently used			
	Answer 64.2 from using 'bh' and 'absin C' (unless clear explanation			
16	that $\frac{1}{2}$ has been cancelled in both area formulae)			
	$14 \times AC = 80.5$			MO
	$\frac{80.5}{14} = 5.75$			MO
	19 × 5.75 × sin 36			МО
	64.2			A0
	3rd M1 can be scored if they have a value for AC			
	eg $AC = 6$ (may be seen on diagrar	n)		МОМО
	$\frac{1}{2}$ × 19 × 6 × sin 36 = 33.5			M1A0
	3rd M1 may be seen in stages			
	eg1 11.5 × sin 36 or [6.7, 6.8]			
	$\frac{1}{2}$ × 19 × [6.7, 6.8]			
	eg2 19 sin 36 or [11.1, 11.2]			
	11.5 × [11.1, 11.2] 2			

Question	Answer	Mark	Commer	nts	
	68.3 – 0.05 or 68.25 or 68.3 + 0.05 or 68.35 or 8.7 – 0.05 or 8.65 or 8.7 + 0.05 or 8.75	M1	accept 68.349 for 68.35 accept 8.749 for 8.75 may be seen in an inequel eg $68.25 \le p < 68.35$		
	$ \begin{array}{c c} \underline{[68.2,68.3)-2\times(8.7,8.8]} \\ 2 \\ \hline \\ M1 \\ \hline \\ c \\ \hline \\ c \\ c \\ \hline \\ c \\ c \\ c \\ c$		$\frac{68.25 - 2 \times 8.75}{2}$ or $\frac{68}{2}$	or <u>68.25 – 17.5</u> 2	
17	25.375 or $\frac{203}{8}$ or $25\frac{3}{8}$	A1	SC2 Answer 25.375 and 25.525		
	Additional Guidance				
	1st M1 If given as an inequality cond eg $68.25 \leqslant p \leqslant 68.35$	M1			
	Ignore any subsequent rounding after 25.375 seen				
	Condone eg 68.250 for 68.25	M1			
	Answer 25.3 or 25.4 with no correct working			M0M0A0	
	Only working for upper bound				
	eg $\frac{68.35 - 2 \times 8.65}{2} = 25.525$			M1M0A0	

Question	Answer	Mark	Comments
	(b:g=) 4:1 or (b:w=) 6:10 or states a number of blue discs that is four times the number of green discs or states a number of blue discs and a number of white discs that are in the ratio 3:5 (not 3 and 5) or $b = 4g$ or $\frac{b}{w} = \frac{3}{5}$	M1	oe ratio or equation eg (b:g=) 3:0.75 or 4 blue 1 green or 6 blue 10 white or $5b = 3w$ do not allow (b: w =) 3:5
18	Three numbers of the form $12n$, $3n$ and $20n$ where $n > 0$ or unsimplified fraction equivalent to $\frac{32}{35}$	A1	any order may be seen in a ratio or as numbers of discs eg 12:3:20 or 100 15 60 or 3 0.75 5 or 4:1: $\frac{20}{3}$ or $\frac{12+20}{12+3+20}$ or $\frac{3+5}{3+0.75+5}$ or $\frac{8}{8.75}$ or $\frac{b+\frac{5}{3}b}{b+\frac{5}{3}b+\frac{1}{4}b}$ or $\frac{\frac{8}{3}b}{\frac{35}{12}b}$
	$\frac{32}{35}$ or 0.91(4) or 91.(4)%	A1	oe fraction eg $\frac{64}{70}$

Additional Guidance is on the next page

	Additional Guidance	
	Ignore conversion of a correct fraction to a decimal or percentage	
	Ignore incorrect simplification of a correct fraction	
	Answer 32 : 35	M1A1A0
18 cont	Final A1 fraction answers must be $\frac{\text{integer}}{\text{integer}}$	
	1 : 4 only scores M1 if indicated as g : b	
	10 : 6 only scores M1 if indicated as w : b	
	1st M1 may be embedded	
	eg1 b:g:w=4:1:10	M1
	eg2 b:g:w=6:3:10	M1
	Condone 4b: g as an indication of 4 blue and 1 green etc	

Question	Answer	Mark	Comme	ents
	$\tan 64 = \frac{h}{4}$ or $\tan 26 = \frac{4}{h}$ or $\frac{h}{\sin 64} = \frac{4}{\sin 26}$	M1	oe eg tan $64 = \frac{h}{15 - 11}$ or tan $(90 - 64) = \frac{15 - 1}{h}$ or $h^2 + 4^2 = \left(\frac{4}{\cos 64}\right)^2$ any letter	
	4 tan 64 or $\frac{4}{\tan 26}$ or $\frac{4}{\sin 26} \times \sin 64$ or 8.2	M1dep	oe eg $\sqrt{\left(\frac{4}{\cos 64}\right)^2 - 4}$ implies M2 may be seen on diagran	
19	$\frac{1}{2}$ × (15 + 11) × their 8.2 or $\frac{1}{2}$ × 4 × their 8.2 + 11 × their 8.2	M1dep	oe eg 15 × their 8.2 – $\frac{1}{2}$ dep on M2	× 4 × their 8.2
	[106.6, 106.62]	A1	accept 107 with working	j seen
	Additional Guidance			
	3rd M1 is for a total area and may be a trapezium or a rectangle + a triangle or a triangle or a triangle	gle		
	8.2 seen scores M2 even if not subsequently used			
	Further work after 106.6 eg 106.6 + 16.4			M1M1M0A0

Question	Answer	Mark	Comments	
	Alternative method 1			
	$\frac{n^2 + n}{2}$ or $\frac{n^2 + 2n + n + 2}{2}$ or $\frac{n^2 + 3n + 2}{2}$	M1	may be seen in stages $eg \ n^2 + n \text{ followed by } \frac{n^2 + n}{2}$	
	$\frac{n^2+n}{2} \text{ and } \frac{n^2+2n+n+2}{2}$ or $\frac{n^2+n}{2} \text{ and } \frac{n^2+3n+2}{2}$	M1dep	may be seen in stages $eg \ n^2 + n \text{ followed by } \frac{n^2 + n}{2}$ and $n^2 + 3n + 2 \text{ followed by } \frac{n^2 + 3n + 2}{2}$ implies M2	
	$\frac{2n^2 + 4n + 2}{2}$ or $n^2 + 2n + 1$ with M2 seen	A1	oe single fraction with terms collected $eg \ \frac{4n^2 + 8n + 4}{4}$	
20	$n^2 + 2n + 1$ and $(n + 1)^2$ with M2A1 seen	A1	allow $(n + 1)(n + 1)$ for $(n + 1)^2$	
	Alternative method 2			
	$\frac{n+1}{2}(n+n+2)$	M1	oe eg $(n+1)\left(\frac{n}{2}+\frac{n+2}{2}\right)$	
	$\frac{n+1}{2}(2n+2)$ or $\frac{n^2+n}{2} + \frac{n^2+n}{2} + \frac{2n+2}{2}$ with M1 seen	M1dep		
	$\frac{2n^2 + 4n + 2}{2}$ or $n^2 + 2n + 1$ with M2 seen	A1	oe single fraction with terms collected $eg \ \frac{4n^2 + 8n + 4}{4}$	
	$n^2 + 2n + 1$ and $(n + 1)^2$ with M2A1seen	A1	allow $(n + 1)(n + 1)$ for $(n + 1)^2$	
	Mark scheme and Additional Guid	Janaa aan	Alliance are the many time manage	

Mark scheme and Additional Guidance continue on the next two pages

Question	Answer	Mark	Comments
	Alternative method 3		
	$\frac{n+1}{2}(n+n+2)$	M1	oe eg $(n+1)\left(\frac{n}{2}+\frac{n+2}{2}\right)$
20 cont	$\frac{n+1}{2}(2n+2)$ with M1 seen	M1dep	oe eg $\frac{(n+1)(2n+2)}{2}$
	$(n + 1)^2$ with M2 seen	A2	A1 $2(n+1)\frac{n+1}{2}$ or $\frac{2(n+1)^2}{2}$ allow $(n+1)(n+1)$ for $(n+1)^2$

Additional Guidance is on the next page

	Additional Guidance				
	Only substituting in values of <i>n</i>	M0M0A0A0			
	Consistently using a different letter to n can score up to M1M1A1A1				
	Using two different letters consistently within the two fractions (eg n replaced by x in the first equation and n replaced by y in the second equation) can score a maximum of M1M1A0A0 unless recovered to the same letter				
	Multiplying fractions instead of adding can score a maximum of M2A0				
	For M marks condone eg n2 for 2n etc				
	$n^2 + n/2$ and $n^2 + 3n + 2/2$ recovered to $\frac{2n^2 + 4n + 2}{2}$	M1M1A0A0			
	and/or $n^2 + 2n + 1$ and/or $(n + 1)^2$				
20 cont	$n^2 + n/2$ and $n^2 + 3n + 2/2$ not recovered	M0M0A0A0			
	$n^2 + n$ and $n^2 + 3n + 2$ recovered to $\frac{2n^2 + 4n + 2}{2}$	M1M1A0A0			
	and/or $n^2 + 2n + 1$ and/or $(n + 1)^2$				
	$n^2 + n$ and $n^2 + 3n + 2$ not recovered	M0M0A0A0			
	Equating to n^2 in working can score a maximum of M1M1A0A0				
	(equating to eg x^2 can score up to M1M1A1A1)				
	1n is allowed for n throughout				
	Alts 2 and 3				
	$\frac{n+1}{2}(2n+2)$ with M1 seen scores M2				
	If they attempt to expand $(n + 1)(2n + 2)$ use Alt 2				
	If they attempt to expand $\frac{1}{2}(2n + 2)$ use Alt 3				

Question	Answer	Mark	Commer	nts
	$\pi r \times 2r$ or $\pi r \times 3r$ or $2\pi r^2$ or $3\pi r^2$ or $5\pi r^2$	M1	oe implied by a correct equ	ation for first A1
	$2\pi r^2 + 3\pi r^2 = 57.8\pi$ or $5\pi r^2 = 57.8\pi$ or $2\pi r^2 = 57.8\pi \div 5 \times 2$ or $3\pi r^2 = 57.8\pi \div 5 \times 3$ or $\sqrt{11.56}$	A1	oe eg $\pi r \times 2r + \pi r \times 3$ or $5r^2 = 57.8$ or $r^2 = 11$ or $2r^2 = 23.12$ or $3r^2 = 34.68$	
	3.4 or $\frac{17}{5}$ or $3\frac{2}{5}$	A1		
	Additional Guidance			
21	11.56 not in a square root or a correct equation			MO
	Adding the area of a circle (or 2 circles) can score a maximum of M1A0A0			
	eg $3\pi r^2 + \pi r^2 = 57.8\pi$ Adding further incorrect terms scores M0			M1A0A0
	T & I scores M1A1A1 if answer 3.4, o			
	Allow πr^2 5 for $5\pi r^2$ etc throughout			
	Answer ± 3.4			M1A1A0
	$5\pi r^2 \times \pi r^2$ or $3\pi r^2 \times \pi r l$ etc			МО
	Allow π to be replaced by [3.14, 3.142]			
	Answer 3 is incorrect unless 3.4 seen in working lines			

Question	Answer	Mark	Comments	
	$(\sqrt{12} =) 2\sqrt{3}$	M1		
	$5\sqrt{3}-2\sqrt{3}=3\sqrt{3}$	A1	implies M1A1	
	27 with M1A1 seen	A1		
	Alternative method 2			
Alternative method 2 $5\sqrt{3} 5\sqrt{3} - 5\sqrt{3} \sqrt{12} - 5\sqrt{3} \sqrt{12} + \sqrt{12} \sqrt{12}$ $+ \sqrt{12} \sqrt{12}$ or $25\sqrt{3} \sqrt{3} - 10\sqrt{3} \sqrt{12} + \sqrt{12} \sqrt{12}$ or $(5\sqrt{3} 5\sqrt{3} =) 75$ or $(5\sqrt{3} \sqrt{12} =) 30$ or $(5\sqrt{3} \sqrt{12} =) 30$ or $(10\sqrt{3} \sqrt{12} =) 60$ or $(\sqrt{12} \sqrt{12} =) 12$ $75 - 30 - 30 + 12$ or		M1	oe expansion eg1 $\sqrt{75} \sqrt{75} - \sqrt{75} \sqrt{12} - \sqrt{75} \sqrt{12} + \sqrt{12} \sqrt{12} + \sqrt{12} \sqrt{75} \sqrt{75} - \sqrt{900} - \sqrt{900} + \sqrt{12} \sqrt{12}$ implies M1A1	
	27 with M1A1 seen	A1		
	Additional Guidance			
	27 with no working $(2\sqrt{3} \text{ not seen})$	M0A0A0		
	Alt 1 $5\sqrt{3} - \sqrt{12} = 3\sqrt{3}$ $(2\sqrt{3} \text{ not})$	M0A0A0		
	Alt 2 75 – 30 – 30 – 12	M1A0A0		
	Alt 1 $5\sqrt{3} - 2\sqrt{3} = 3\sqrt{3}$ followed by (condone missing brackets)	27 M1A1A1		
	Only converting to decimals		M0A0A0	

Question	Answer	Mark	Comme	nts
	64 : 125	B1		
23	Ad	ditional G	Guidance	
	(x + 6)(x - 2)		oe	
	or $\frac{-4 \pm \sqrt{4^2 - 4 \times 1 \times -12}}{2 \times 1}$	M1		
	or $-2 \pm \sqrt{16}$			
	-6 and 2	A1	may be seen in inequalition intersections with <i>x</i> -axis	
			must be selected if apper values or a table	earing in a list of
	-6 < x < 2 or 2 > x > -6	A1ft	ft M1A0 and two values must be a single inequa	lity
24	Additional Guidance			
	To award A1ft the values must be used to give a continuous interval			
	eg1 $(x + 6)(x - 2)$ followed by $(x =) 6$ and $(x =) -2$ Answer $-2 < x < 6$			M1A0A1ft
	eg2 $(x + 6)(x - 2)$ followed by $(x =) 6$	M1A0A0ft		
	x < 2 and $x > -6$			M1A1A0
	-6 < x > 2			M1A1A0
	$-6 \leqslant x < 2$			M1A1A0
	-6 < x < 2 in working with different answer on answer line			M1A1A0
	-6 < x < 2 in working with integers on answer line			M1A1A0

Question	Answer	Mark	Comments	
	8 + 19 or 27	M1	may be seen in the table	
25	$\frac{2}{5}$ × 5 (× 1) or 2	M1	oe eg $\frac{55-53}{5} \times 5$ or $\frac{50}{5 \times 10 + 10 \times 20 + 5 \times 26 + 15 \times 8} \times 2 \times 1$ or 0.1×20	10
	$\frac{8}{10} \times 10 \times 2 \text{ or } 16$	M1	may be seen on the histogram oe eg $\frac{63-55}{10} \times 10 \times 2$ or $\frac{50}{5 \times 10 + 10 \times 20 + 5 \times 26 + 15 \times 8} \times 8 \times 20$ or 0.1 × 160 may be seen on the histogram	
	9	A1		
	Additional Guidance			
	18 (medium eggs) for Farm B with no 3rd M1	working implies 2nd and		
	(19+8-2-16=19+8-18) 19 –	M3A1		
	$\frac{27}{50} - \frac{2}{50} - \frac{16}{50} = \frac{9}{50}$	МЗАО		
	8 + 19 + 15 + 8 does not score the 1s			
	8 27 42 50 is M0 unless they sele			

Question	Answer	Mark	Comme	nts	
	Alternative method 1				
	(a =) -3	B1			
	(b =) 4	B1ft	ft 7 + their <i>a</i> correct or ft		
	(<i>c</i> =) –11	B1ft	ft $10 + 7 \times$ their a correct or ft		
	Alternative method 2				
	$x^{3} + 5x^{2} + 2x^{2} + 10x + ax^{2} + 5ax$ + $2ax + 10a$ or $x^{3} + 7x^{2} + 10x + ax^{2} + 7ax + 10a$ or 10a = -30 or $a = -3$	M1	oe terms may be seen in a grid implied by $x^3 + 5x^2 + 2x^2 + 10x - 3x^2 - 15x - 6x - 30$ or $x^3 + 7x^2 + 10x - 3x^2 - 21x - 30$		
5 + 2 + their $a = b$ or $b = 4$ or 10 + their $5a$ + their $2a = c$ or $c = -11$ or $x^3 + 4x^2 - 11x - 30$		M1dep	oe eg $5x^2 + 2x^2 + $ their ax^2 or 10x + their $5ax + $ their $2a$		
	a = -3 and $b = 4$ and $c = -11$	A1			
	Ad	ditional G	uidance		
	Apply the scheme that awards most marks				
	Allow x10 for 10x etc				
	a=-3 $b=4$ $c=-11$ in working with one or both negative signs omitted on answer lines			B2	
	a=-3 $b=4$ $c=-11$ in working with values in a different order on answer lines			B2	

Question	Answer	Mark	Comments
	Alternative method 1		
	$y + 1 = \frac{2x}{5}$ or $5y = 2x - 5$	M1	x and y may be transposed oe 1st step eg $\frac{y}{2} = \frac{x}{5} - \frac{1}{2}$
	5(y+1) = 2x or $5y+5=2x$	M1dep	x and y may be transposed oe 2nd step eg $\frac{y}{2} + \frac{1}{2} = \frac{x}{5}$ implies M2
27	$\frac{5(y+1)}{2}$ or $\frac{5y+5}{2}$ or $\frac{5(3+1)}{2}$ or 10	A1	may use x instead of y oe expression or calculation eg $\frac{5y}{2} + \frac{5}{2}$ or $\frac{3+1}{\frac{2}{5}}$
	$\frac{2 \times -0.5}{5}$ - 1 or -1.2 or $-\frac{6}{5}$ or -1 $\frac{1}{5}$	M1	oe
	8.8 or $\frac{44}{5}$ or $8\frac{4}{5}$	A1	

Mark scheme and Additional Guidance continue on the next page

Question	Answer	Mark	Comments		
	Alternative method 2				
	$\frac{2x}{5} = 3 + 1 \text{ or } \frac{2x}{5} = 4$	M1	oe		
	$2x = $ their 4×5	M1dep	oe implies M2		
	10	A1			
	$\frac{2 \times -0.5}{5}$ – 1 or –1.2	N44	oe		
	or $-\frac{6}{5}$ or $-1\frac{1}{5}$	M1			
27 cont	8.8 or $\frac{44}{5}$ or $8\frac{4}{5}$	A1			
	Additional Guidance				
	The 4th mark may be seen first and r				
	f may be used for y				
	Missing brackets must be recovered				
	Answer 8.8	M2A1M1A1			
	First three marks in Alt 1				
	Can be gained using a reverse functi (applied to 3) which may be seen in s				
	eg $3 + 1 = 4$ and $4 \times 5 = 20$ and $20 \div 2$			M1M1A1	
	Part marks are not possible for this approach				