

GCSE **MATHEMATICS**

New Specimen Papers published June 2015

Paper 3 Foundation - Mark Scheme

8300/3F

Version 1.0

Principal Examiners have prepared these mark schemes for specimen papers. These mark schemes have not, therefore, been through the normal process of standardising that would take place for live papers.

Further copies of this Mark Scheme are available from aga.org.uk

Glossary for Mark Schemes

GCSE examinations are marked in such a way as to award positive achievement wherever possible. Thus, for GCSE Mathematics papers, marks are awarded under various categories.

If a student uses a method which is not explicitly covered by the mark scheme the same principles of marking should be applied. Credit should be given to any valid methods. Examiners should seek advice from their senior examiner if in any doubt.

M Method marks are awarded for a correct method which could

lead to a correct answer.

A Accuracy marks are awarded when following on from a correct

method. It is not necessary to always see the method. This can

be implied.

B Marks awarded independent of method.

ft Follow through marks. Marks awarded for correct working

following a mistake in an earlier step.

SC Special case. Marks awarded within the scheme for a common

misinterpretation which has some mathematical worth.

M dep A method mark dependent on a previous method mark being

awarded.

Bdep A mark that can only be awarded if a previous independent mark

has been awarded.

oe Or equivalent. Accept answers that are equivalent.

eg accept 0.5 as well as $\frac{1}{2}$

[a, b] Accept values between a and b inclusive.

3.14... Accept answers which begin 3.14 eg 3.14, 3.142, 3.1416

Use of brackets It is not necessary to see the bracketed work to award the marks.

Page 2 Version 1.0

Examiners should consistently apply the following principles

Diagrams

Diagrams that have working on them should be treated like normal responses. If a diagram has been written on but the correct response is within the answer space, the work within the answer space should be marked. Working on diagrams that contradicts work within the answer space is not to be considered as choice but as working, and is not, therefore, penalised.

Responses which appear to come from incorrect methods

Whenever there is doubt as to whether a student has used an incorrect method to obtain an answer, as a general principle, the benefit of doubt must be given to the student. In cases where there is no doubt that the answer has come from incorrect working then the student should be penalised.

Questions which ask students to show working

Instructions on marking will be given but usually marks are not awarded to students who show no working.

Questions which do not ask students to show working

As a general principle, a correct response is awarded full marks.

Misread or miscopy

Students often copy values from a question incorrectly. If the examiner thinks that the student has made a genuine misread, then only the accuracy marks (A or B marks), up to a maximum of 2 marks are penalised. The method marks can still be awarded.

Further work

Once the correct answer has been seen, further working may be ignored unless it goes on to contradict the correct answer.

Choice

When a choice of answers and/or methods is given, mark each attempt. If both methods are valid then M marks can be awarded but any incorrect answer or method would result in marks being lost.

Work not replaced

Erased or crossed out work that is still legible should be marked.

Work replaced

Erased or crossed out work that has been replaced is not awarded marks.

Premature approximation

Rounding off too early can lead to inaccuracy in the final answer. This should be penalised by 1 mark unless instructed otherwise.

6(b)

(Box) A and (Box) B

Q	Answer	Mark	Comments
1(a)	9	B1	
1(b)	6	B1	
		I	
2	С	B1	
3	27	B1	
	7500 – 1875 or 5625	M1	
4	their 5625 ÷ 36	M1	
	156.25	A1	
	(400 00) 4 000 4 00		
	(120 + 80) ÷ 4 or 200 ÷ 4 or 50	M1	
	120 ÷ 3 or 40	M1	
5	their 50 – their 40 or 10	M1dep	dependent on at least M1
	$\frac{10}{80}$ or $\frac{1}{8}$	A1	oe fraction
	Box A \rightarrow P(3) = $\frac{1}{6}$ and		Allow one incorrect probability
	Box B \rightarrow P(3) = $\frac{1}{3}$ and		
6(a)	Box $C \rightarrow P(3) = \frac{2}{5}$ and	M1	
	Box D \to P(3) = $\frac{2}{4}$ or $\frac{1}{2}$		
	(Box) D and all probabilities correct	A1	
	Ī		

Page 4 Version 1.0

B1

Q	Answer	Mark	Comments	
	240 – 87.5(0) or 152.5(0)	M1		
7(a)	152.50	A1		
	Alternative method 1	1		
	120 – 87.5(0) or 32.5(0)	M1		
7/b)	No and $152.5(0) \neq 2 \times 32.5(0)$	A1ft	oe ft part(a)	
7(b)	Alternative method 2			
	152.5(0) ÷ 2 + 87.5(0) or 163.75	M1		
	No and 163.75	A1ft	oe ft part(a)	
8	5 × 7 (+) 9 × -2 or 35 or 18	M1		
	17	A1		
		_		
9	(-2, 3) and (2, 1)	B2	B1 (-2, 3) or (2, 1) or (-2, 3) and (2, 1) correctly plotted SC1 (3, -2) and (5, 2) or (-5, 2) and (-3, 6)	

Q	Answer	Mark	Comments		
10(a)	(10, 20.8), (20, 21.6), (30, 22.4) and (40, 23.2) plotted	B1			
	Straight line through their points	B1ft	ft line of best fit following plotting error		
10(b)	[19.9, 20.1]	B1			
	Alternative method 1				
	21.2 or 22.8	M1			
	1.6	A1ft	ft their graph		
	Alternative method 2				
	(20.8 + 21.6) ÷ 2 or 21.2				
	or	M1			
	(22.4 + 23.2) ÷ 2 or 22.8				
	1.6	A1			
10(c)	Alternative method 3				
	23.2 – 21.6		Finds the difference for any two masses		
	or		20 kg apart		
	22.4 – 20.8		Or Doubles the difference for any two masses		
	or		Doubles the difference for any two masses 10 kg apart		
	21.6 – 20	M1			
	or				
	(22.4 – 21.6) × 2				
	or				
	$(23.2 - 22.4) \times 2$				
	1.6	A1			

Page 6 Version 1.0

Q	Answer	Mark	Comments
	6, 9, 12, 15 or difference of 3 or 3 <i>n</i> or 2 <i>n</i> seen	M1	
11(a)	(n +) 2n + 3 or $3n + 3$ or $3(n + 1)$ or $3 \times 100 + 3$	M1dep	oe
44(b)	303	A1 B1	
11(b)	× 2 + 3	ы	
12(2)	<u>1</u> 3.5	M1	
12(a)	2 7	A1	oe fraction
	Alternative method 1		
	120 000 × (1 + 2.5)	M1	
	420 000	A1	
	Alternative method 2		
12(b)	120 000 ÷ $\frac{\text{their 2}}{\text{their 7}}$ or 120 000 ÷ $\frac{\text{their 1}}{\text{their 3.5}}$	M1	where fraction in (a) is of the form $\frac{m}{n}$, $m > 1$ where fraction in (a) is of the form $\frac{1}{n}$
	420 000	A1ft	ft their answer from part (a)

Q	Answer	Mark	Comments
	0.1 × 32 or 3.2(0)	M1	oe
	32 – their 3.2(0) or 28.8(0)	M1dep	0.9 × 32 or 28.8(0) scores M2
	2000 ÷ their 28.8(0) or 69.(44)	M1	Condone their 28.8 being 32
13	2000 ÷ 28.5(0) or 70.(17)		
	or	M1	
	28.5 × 70 = 1995		
	69 and 70 seen and 70 chosen	A1	
	4x + 20 = 15		oe
	or	M1	
	$x + 5 = 15 \div 4$		
14	4x = 15 - their 20		oe
• •	or	M1	
	$x = 15 \div 4 - 5$		
	-1.25	A1ft	oe
			ft M1M0 or M0M1 with only one error
	Alternative Method 1		
	90 ÷ 40 or 2.25	M1	oe
	or 356 ÷ 40 or 8.9	IVII	
15	801	A1	
.5	Alternative Method 2		
	40 + 40 + 10	M1	Clear build up method
	and 356 ÷ 4 or 89		
	801	A1	

Page 8 Version 1.0

Q	Answer	Mark	Comments
	24 + 45 + 281 + 50 or 400	M1	
16	0.18 × their 400 or 72	M1	oe
	their 72 – 45 or 27	M1	
	<mark>23</mark>	A1	
17	$2 \times 14 + 10 \times 15 + 2 \times 16 + 3 \times 17 + 13 \times 18$ or $28 + 150 + 32 + 51 + 234$ or 495	M1	Allow one error or omission
	(2 × 14 + 10 × 15 + 2 × 16 + 3 × 17 + 13 × 18) ÷ 30 or 16.5	M1dep	Condone bracket error
	14	A1	Full method required
18	10 000	B1	
19	(7) -5)	B1	
20	0.667	B1	
21	Ticks 'False' and states that x could be -4	B1	oe

Q	Answer	Mark	Comments
	Alternative method 1		
	6.31 – 3.6(0) or 2.71	M1	
	their 2.71 ÷ 3.6(0) (× 100) or 0.752(7) or 0.753	M1dep	
	75.2(7) or 75.28 or 75.3	A1	Allow 75 with correct method seen
22	Alternative method 2		
	6.31 ÷ 3.6(0) (× 100) or 1.752(7) or 1.753 or 175.2(7) or 175.3	M1	
	1.752(7) – 1 or 1.753 – 1 or 175.2(7) – 100 or 175.3 – 100	M1dep	
	75.2(7) or 75.28 or 75.3	A1	Allow 75 with correct method seen
23	One continuous are centre A		Allow ± 2 mm for radii
	One continuous arc, centre A, intersecting AB and AD		7 MOW ± 2 mm for radii
	or The state of th	M1	
	Two arcs, each with same radius and centre A, intersecting AB and AD		
	Intersecting arcs with same radius	A1	Allow ± 2 mm for radii
	and centres at the intersections with AB and AD		The radius of these arcs need not be the same as those used for M1
	and		
	angle bisector drawn		
	Arc of radius [5.8, 6.2] cm, centre <i>C</i> , intersecting their angle bisector and <i>P</i> labelled		SC1 Arc of radius [5.8, 6.2] cm, centre C with no angle bisector attempted
	P C B	B1ft	

Page 10 Version 1.0

Q	Answer	Mark	Comments
24(a)	375.112(1656)	B1	Condone if correctly rounded to 7 significant figures or better eg 375.1122
24(b)	20 ² or 400 or $\sqrt[3]{1000}$ or 10 or 5	M1	
,	$400 - 10 \div 5 = 398$ or $400 - 2 = 398$	A1	
25	C and three correct comparable values eg 12(%) 12.5(%) 12.75(%)) 0.12 0.125 0.1275 \[\frac{48}{400} & \frac{50}{400} & \frac{51}{400} \] 1:7.3 1:7 1:6.8 (3:22) 3:21 3:20.5	В3	 B2 for two correct conversions to same comparable form B1 for one correct conversion to another form eg A 3/25 oe or 12(%) or 0.12 B 1:7 oe or 12.5(%) or 0.125 C 51/400 oe or 51:349 oe or 0.1275
26	D	B1	

Q	Answer	Mark	Comments
	9 + 3x + x - 5 + 2x or $6x + 4$ or $3x + x - 5 + 2x$ or $6x - 5$	M1	oe
27	their $(6x + 4) = 100$ or their $6x - 5 = 91$ or $6x = 96$	M1	$\frac{9}{\text{their } (6x+4)} = \frac{9}{100}$
	<i>x</i> = 16	A1	
	11 100	B1ft	ft their 16

	100(%) – 14(%) or 86(%) or 1 – 0.14 or 0.86	M1	Implied by 87 139(.5)
28	101 325 × 0.86 ⁴	A1	oe eg 101 325 × 0.86 or 87 139(.5) and their 87 139(.5) × 0.86 or 74 939(.97) and their 74 939(.97) × 0.86 or 64 448(.3742) and their 64 448(.3742) × 0.86
	55 425()	A1	May be implied by 55 000 or 55 400 or 55 430 or 55 426
	55 000	B1ft	ft their answer rounded to 2sf

Page 12 Version 1.0

Q	Answer	Mark	Comments		
	Alternative method 1				
	$\angle PCB = 180 - 90 - 15 \text{ or } 75^{\circ}$ or $\angle PCB = 90 - 15$	M1	oe Angle may be seen on diagram		
	$\angle ABC = \angle PCB = $ their 75 and $\angle BCD = 180 - $ their 75 or 105°	M1	oe Angle may be seen on diagram		
	x = 105 – 75 = 30°	A1	Full method required		
	Alternative method 2	<u>I</u>			
	$\angle PCB = 180 - 90 - 15 \text{ or } 75^{\circ}$ or $\angle PCB = 90 - 15$	M1	oe Angle may be seen on diagram		
29	$\angle ABC = \angle PCB = $ their 75 and $\angle ABP = $ their 75 – 15 or 60° and $\angle BAC = 180 - 90 - $ their 60	M1	oe Angles may be seen on diagram		
	$x = \angle BAC = 30^{\circ}$	A1	Full method required		
	Alternative method 3				
	$\angle PCB = 180 - 90 - 15 \text{ or } 75^{\circ}$ or $\angle PCB = 90 - 15$	M1	oe Angle may be seen on diagram		
	$\angle ABC = \angle PCB = $ their 75 and $\angle BAC = 180 - $ their 75 – their 75	M1	oe Angle may be seen on diagram		
	$x = \angle BAC = 30^{\circ}$	A1	Full method required		

Copyright $\ensuremath{\texttt{©}}$ 2015 AQA and its licensors. All rights reserved.

AQA retains the copyright on all its publications. However, registered schools/colleges for AQA are permitted to copy material from this booklet for their own internal use, with the following important exception: AQA cannot give permission to schools/colleges to photocopy any material that is acknowledged to a third party even for internal use within the centre.