

Mark Scheme (Results)

Summer 2018

Pearson Edexcel International GCSE In Chemistry (4CH0) Paper 2CR

Edexcel and BTEC Qualifications

Edexcel and BTEC qualifications are awarded by Pearson, the UK's largest awarding body. We provide a wide range of qualifications including academic, vocational, occupational and specific programmes for employers. For further information visit our qualifications websites at <u>www.edexcel.com</u> or <u>www.btec.co.uk</u>. Alternatively, you can get in touch with us using the details on our contact us page at <u>www.edexcel.com/contactus</u>.

Pearson: helping people progress, everywhere

Pearson aspires to be the world's leading learning company. Our aim is to help everyone progress in their lives through education. We believe in every kind of learning, for all kinds of people, wherever they are in the world. We've been involved in education for over 150 years, and by working across 70 countries, in 100 languages, we have built an international reputation for our commitment to high standards and raising achievement through innovation in education. Find out more about how we can help you and your students at: www.pearson.com/uk

Summer 2018 Publications Code 4CH0_2CR_1806_MS All the material in this publication is copyright © Pearson Education Ltd 2018

General Marking Guidance

• All candidates must receive the same treatment. Examiners must mark the first candidate in exactly the same way as they mark the last.

• Mark schemes should be applied positively. Candidates must be rewarded for what they have shown they can do rather than penalised for omissions.

• Examiners should mark according to the mark scheme not according to their perception of where the grade boundaries may lie.

• There is no ceiling on achievement. All marks on the mark scheme should be used appropriately.

• All the marks on the mark scheme are designed to be awarded. Examiners should always award full marks if deserved, i.e. if the answer matches the mark scheme. Examiners should also be prepared to award zero marks if the candidate's response is not worthy of credit according to the mark scheme.

• Where some judgement is required, mark schemes will provide the principles by which marks will be awarded and exemplification may be limited.

• When examiners are in doubt regarding the application of the mark scheme to a candidate's response, the team leader must be consulted.

• Crossed out work should be marked UNLESS the candidate has replaced it with an alternative response.

Question number	Answer	Notes	Marks
1 (a)	carbon monoxide	ACCEPT CO	1
(b)	oxygen	ACCEPT O ₂ IGNORE O	1
(c)	chlorine	ACCEPT Cl ₂ IGNORE Cl	1
(d)	nitrogen	ACCEPT N ₂ IGNORE N	1
(e)	chlorine	ACCEPT Cl ₂ IGNORE Cl	1
(f)	nitrogen AND carbon monoxide	In either order ACCEPT N ₂ AND CO IGNORE N	1
		Total for Questic	on $1 = 6$

)uesti numb		Answer	Notes	Marks
2	(a)	(i)	M1 (it/mass) decreases		2
			M2 (as) carbon dioxide/CO ₂ /gas escapes out of/leaves (the flask)	ALLOW carbon dioxide/CO ₂ / gas goes into air IGNORE carbon dioxide/CO ₂ /gas given off/produced /formed on its own	
		(ii)	<u>all</u> (hydrochloric) acid has reacted	ACCEPT the acid is used up ALLOW there was not enough acid to react with (all the) marble chips ALLOW acid was the limiting factor IGNORE marble chips was in excess	1
		(iii)	mass (of flask and contents) stays the same/stops decreasing	ACCEPT stops bubbling/fizzing/effervescing IGNORE no more gas produced/given off	1
	(b)	(i)	 A 1 minute (correct answer as the gradient of the curve is steeper than at 4, 6 or 8 minutes) B 4 minutes (incorrect - the gradient of the curve is less steep than at 1 minute) C 6 minutes (incorrect - the gradient of the curve is less steep than at 1 minute) D 8 minutes (incorrect - the gradient of the curve is less steep than at 1 minute) D 8 minutes (incorrect - the gradient of the curve is less steep than at 1 minute) 		1
		(ii)	M1 starts from 0,0 and is steeper than original curve		2
			M2 levels off before original curve but at same height		

Question number	Answer	Notes	Marks
2 (c)	M1 fewer (acid) particles in same volume	IGNORE references to wrong type of particles e.g. molecules	3
	M2 (so) fewer (successful) collisions per second	ACCEPT less frequent (successful) collisions IGNORE references to less chance of collision	
	M3 (so) lower rate of reaction	Any reference to particles losing energy / moving more slowly can score M1 only	

Total for Question 2 = 10

	uest umb		Answer		Notes	Marks
3	(a)	(i)	pipette			1
		(ii)	to see colour (change) more easi OWTTE	ly/clearly		1
		(iii)	M1 (before) pink		ACCEPT magenta ALLOW red	2
			M2 (after) colourless		ACCEPT no colour ALLOW decolourised REJECT discoloured IGNORE clear ALLOW 1 mark for both correct but in reverse order	
		(iv)	water does not affect number of moles/amount of NaOH (present)	OWTTE	ALLOW water will not affect the (titration) result/volume of acid needed	1
					REJECT water does not affect the concentration of NaOH IGNORE water does not affect the pH of NaOH (solution) IGNORE references to effect on indicator	
	(b)					2
			Burette reading after adding the acid	(22.80)		
			Burette reading before adding the acid	1.45	Mark CQ	
			Volume in cm ³ of acid added	21.35		
			M1 for reading before adding the M2 for volume added	acid		

Question number	Answer	Notes	Marks
3 c) (i)	ticks under last three results		1
(ii)	M1 (21.50 +21.35+21.40) ÷ 3	mark CQ on any combination of ticked results If no results are ticked then M1 can only be awarded if the last three results are averaged If only one result ticked then no marks can be scored in (ii)	2
	M2 21.42	Mark CQ on M1 All answers should be correctly rounded to 2 dp	
3(d)	M1 $n[(H_3PO_4] = (0.02 \times 21.30) \div 1000$ OR 0.000426 OR	ACCEPT 0.00043 OR 4.3 x 10 ⁻⁴	3
	 4.26 x 10⁻⁴ M2 n[NaOH] = 3 x M1 OR evaluated correctly and quoted to at least two significant figures 	If M1 is correct this should be 0.001278 ACCEPT 0.00128 OR 0.0013	
	M3 conc ⁿ of NaOH = M2 x 1000 ÷ 25 evaluated correctly and quoted to at least two significant figures	If M1 and M2 are correct this should be 0.05112 ACCEPT 0.052 from 0.0013 ACCEPT 0.0512/0.051 from 0.00128	
		correct answer with no working scores 3	
		examples of possible answers using incorrect mole ratio 0.01704 scores 2 marks	
		0.00568 scores 2 marks Total for Question 3	3 = 13

Total for Question 3 = 13

Question number	Answer	Notes	Marks
4 (a) (i)	T / C ₂ H ₄ Br ₂	ACCEPT displayed formulae	1
(ii)	P / CH₄	ACCEPT displayed formulae	1
(b)(i)	H H—C—H H	IGNORE bond angles	1
(ii)	M1	IGNORE bond angles	2
	$H \qquad H \qquad H \qquad H \qquad H $	ALLOW in either order	
	M2 H H H H H C C C C C H H H		
		ALLOW cis– and trans– isomers for 2 marks	

Question number	Answer	Notes	Marks
4 (c) (i)	(bromine changes colour from red-brown to) colourless/decolourised	If initial colour given must be red-brown /orange/brown/yellow or any combination of orange/brown/yellow e.g. orange-brown REJECT discoloured IGNORE clear	1
(ii)	M1 (react with) bromine/ Br_2	IGNORE (aq) IGNORE Br	2
	M2 UV radiation/light	IGNORE heat IGNORE pressure	
		mark(s) can be scored if reactants are shown in an equation/word equation (even if equation is incomplete or not fully correct)	
(d) (i)	addition (polymers)		1
(ii)	$ \begin{array}{c} H & H \\ - & I \\ - & - \\ - & I \\ - & - \\ H & - \\ - & - $		2
	M1 three Hs, one Cl and single bond between two Cs	ALLOW CI in any of the four positions	
	M2 extension bonds and n	ACCEPT n anywhere after brackets but not before Extension bonds do not need to go out of brackets	
		M2 DEP M1	

)uest numb		Answer	Notes	Marks
4	(e)	(i) (ii)	condensation (polymerisation) Any one from:		1
			M1 in condensation polymerisation (small) molecule also formed	ACCEPT water/H ₂ O/HCI also formed ALLOW two products formed ALLOW another compound/product/by- product formed	1
			M2 addition polymerisation involves identical/same monomers/starting molecules		
			M3 condensation polymerisation involves two/ different monomers/starting molecules		
			M4 addition polymerisation produces only one product	ALLOW in addition polymerisation (carbon to carbon) double bonds become single	
			M5 addition polymerisation involves the breaking of (carbon to carbon) double bonds		
			M6 condensation polymerisation forms ester/amide links		

Total for Question 4 = 13

Question number	Answer	Notes	Marks
5 (a) (i)	electrolysis	ACCEPT decomposition	1
(ii)	zinc reacts with (sulfuric) acid	ACCEPT zinc is not inert (electrode) ALLOW zinc reacts with electrolyte/solution ALLOW zinc dissolves in the acid ALLOW zinc reacts with oxygen IGNORE zinc is (too/very) reactive IGNORE references to cost	1
(b) (i)	glowing splint/spill relights/rekindles/catches fire	REJECT lighted splint/spill	1
(ii)	$2H^+ + 2 e^- \rightarrow H_2$	ALLOW $2H_2O + 2e^-$ $\rightarrow H_2 + 2 OH^-$	1
(c)	M1 4 faraday give 1 mol O ₂		3
	M2 0.010 faraday gives 0.0025 mol O_2	M2 subsumes M1	
	M3 (so) volume of $O_2 = (0.0025 \text{ x} 24000) = 60 \text{ (cm}^3)$	Mark CQ	
		correct answer with no working scores 3 240/960/120 (cm ³) score 2 marks	
(d)	very low concentration of hydroxide/OH ⁻ ions present in (sulfuric) acid	ALLOW (there are) no/few hydroxide/OH- ions in (sulfuric) acid	1
		Total for Question !	5 - Q

Question number	Answer	Notes	Marks
6 (a) (i)	M1 volume of waterM2 temperature of water before and after burning	ALLOW mass of water ALLOW temperature change	2
(ii)	M1 <i>n</i> [heptanol] = 0.75 ÷ Mr OR evaluated correctly and quoted to at least two significant figures	calculator answer from 114 is 0.0065789473684 (mol) calculator answer from 116 is 0.0064655172	3
	 M2 19 ÷ M1 M3 evaluated correctly and quoted to at least two significant figures 	calculator answer from 114 is 2888 (kJ/mol) = 2900 (kJ/mol) to 2 sig fig calculator answer from 116 is 2938.66 (kJ/mol) = 2900 (kJ/mol) to 2 sig fig	
		IGNORE sign in final answer	
	OR		
	M1 (0.75g produces 19kJ)		
	so 1g produces 19 ÷ 0.75 = 25.33 (kJ)		
	M2 so 114g produces 114 x 25.33M3 evaluated correctly and quoted to at least two significant figures	from 114 calculator the answer is 2888 (kJ/mol) = 2900 (kJ/mol) to 2 sig fig	
		IGNORE sign in final answer	
		correct answer with no working scores 3	

)uestic numbe		Answer	Notes	Marks
6	(b)	(i)	M1 Σ(bonds broken) = [(2 × 436) + 498] OR 1370 (kJ)	IGNORE sign	3
			M2 Σ(bonds formed) = 4 × 464 OR 1856 (kJ)	IGNORE sign	
			M3 Δ <i>H</i> = - 486 (kJ)	negative sign is required	
				-486 with or without working scores 3	
			OR	(+)486 with or without working scores 2	
			if M1 and/or M2 incorrect:		
			M3 numerical difference between M1 and M2		
			If M2 greater than M1 answer must be negative		
			If M2 less than M1 answer must be positive	unless a clear statement is made that reaction is exothermic then sign can be negative	

Question number	Answer	Notes	Marks
6 (b) (ii)	M1 for $2H_2 + O_2$ and $2H_2O$ in correct positions	ALLOW hydrogen and oxygen and water ALLOW reactants and products	2
	M2 ΔH correctly placed and labelled	Mark CQ on sign in (i)	
		ACCEPT ΔH label on vertical line/double arrow/arrow pointing from reactants level to product level	
		REJECT arrow pointing from products level to reactants level	
		IGNORE activation energy attempts	
	T	otal for Question 6	5 = 10

Pearson Education Limited. Registered company number 872828 with its registered office at 80 Strand, London, WC2R 0RL, United Kingdom