Paper 1 Higher

Question number	Answer	Mark
$\mathbf{1 (a)}$	An answer that provides a description by making reference to: - transverse waves have oscillations perpendicular to direction of travel of the wave (1) whereas longitudinal waves have oscillations in the same direction as the direction of travel of the wave (1)	(2)

Question number	Answer	Mark
$\mathbf{1 (b) (i)}$	An answer that combines the following points of understanding to provide a logical description:	
• take time T for waves to pass a fixed point (1) and frequency $=\frac{\text { number of waves }}{\text { time taken (1) }}$		

Question number	Answer	Mark
$\mathbf{1 (b) (\text { ii) }}$	A	(1)

Question number	Answer	Mark
1(b)(iii)	D	(1)

Question number	Answer	Additional guidance	Mark
2(a)	An explanation that combines identification - understanding (1 mark) and reasoning/justification - understanding (2 marks): - at the time, there was only naked-eye evidence (1) which indicated Sun/Moon/planets appear to move across the sky (1) in the same direction, same motion each day (1)	allow valid alternatives, e.g. references to comets	

Question number	Answer	Additional guidance	Mark
2(b)	An explanation that combines identification - understanding (1 mark) and reasoning/justification - understanding (2 marks): - both theories predict an expanding universe and the Big Bang theory also predicts that the universe had a beginning (1)	the red shift theory indicates that the universe is expanding so supports both theories (1) -whereas CMB also indicates that the universe had a beginning, so supports Big Bang theory (1)provided evidence that the Steady State theory was incorrect	

Question number	Answer	Mark
2(c)(i)	B	(1)

Question number	Answer	Mark
2(c)(ii)	B	(1)

Question number	Answer	Mark
3(a)(i)	An explanation that combines identification via a judgement $(1$ mark) to reach a conclusion via justification/reasoning (2 marks):	
- galaxy C has the greatest red shift (1)		
- so this galaxy has the greatest speed (1)		
since the galaxy with the greatest speed will be		
furthest away, then galaxy C is at the furthest		
distance(1)		

Question number	Answer	Additional guidance	Mark
3(a)(ii)	20(nm)	Allow answers in the range 19 to 25	(1)

Question number	Answer	Additional guidance	Mark
3(a)(iii)	Substitution (1) $v=\frac{\left(3 \times 10^{8}\right) \times\left(20 \times 10^{-9}\right)}{\left(390 \times 10^{-9}\right)}$ Answer (1) $15400000(\mathrm{~m} / \mathrm{s})$	allow ecf from (c)(i) power of 10 error $=$ max 1	accept $15384615(\mathrm{~m} / \mathrm{s})$ award full marks for correct numerical answer without working

Question number	Answer	Additional guidance	Mark
3(b)	Any two from the following improvements:	allow	
	- use wider aperture telescope/camera (1) better quality objective lens (1) use longer exposure time while telescope is locked onto star (1) move telescope to better seeing conditions, e.g. dry desert, higher up a mountain, dark skies (1)	improvements from photography, e.g. use longer exposure time ignore sharpness of the image	use a satellite telescope

Question number	Answer	Additional guidance	Mark
4(a)(i)	Calculating the mean (1) 18.36 Rounding to 2 s.f. (1) $18(\mathrm{~cm})$	award full marks for correct numerical answer without working	

Question number	Answer	Additional guidance	Mark
4(a)(ii)	Rearrangement (1) $t=\sqrt{\frac{\text { distance }}{500}}$	award full marks for correct numerical answer without working	
	Substitution and answer (1) time $=0.17(\mathrm{~s})$	allow answers which round to 0.17, e.g. 0.1673	(2)

Question number	Answer	Additional guidance	Mark
4(b)	An explanation that combines identification via a judgement (1 mark) to reach a conclusion via justification/reasoning (1 mark): - 25.5 is an anomalous result (1) (because) it is much further away from the mean than the other results (1)	ignore 19	

Question number	Answer	Mark
4(c)	- Take more readings (1) Idea that a third student should also measure the reaction time (1)	(2)

Question number	Answer	Additional guidance	Mark
4(d)	An answer that combines the following points to provide a logical description of the plan/method/experiment:	- using a larger group of students/large population of students (1) and measure how their reaction time varies with age/height (1)	allow any suitable variable

Question number	Answer	Additional guidance	Mark
5(a)	Rearrangement (1) $m=\frac{f}{a}$ Substitution and conversion (1) $m=\frac{1870}{1.83}$ Answer and rounding to 3 s.f. (1) $1020(\mathrm{~kg})$	maximum 2 marks if kN not converted to N award full marks for correct numerical answer without working	

Question number	Answer	Additional guidance	Mark
$\mathbf{5 (b)}$	Rearrangement of $\frac{(v-u)}{t}=a \quad(1)$ $v=u+a t$ Substitution (1) $v=0+1.83 \times 16$		
	Answer (1) $29.3(\mathrm{~m} / \mathrm{s})$	award full marks for correct numerical answer without working	(3)

Question number	Answer		Mark
5(c)	Correctly identifies data points from the graph to calculate areas (1) Calculates area under AB (1) $240 \text { m }$ Calculates area under CD (1) $135 \text { m }$ distance travelled at constant speed $=240 \mathrm{~m}$ is greater than distance travelled when slowing down $=135 \mathrm{~m}$ (1)		(4)
Question number	Answer		Mark
6(a)	B		(1)
Question number	Answer	Additional guidance	Mark
6(b)(i)	The time taken for the activity of a radioactive nuclide to halve (1)	accept for nuclide: isotope sample	(1)
Question number	Answer	Additional guidance	Mark
6(b)(ii)	Determines number of half-lives and rounds (1) $263 / 87.7=3$ Determines that 3 half-lives is $1 / 2 \times 1 / 2 \times 1 / 2=1 / 8(1)$ Determines mass of Pu-238 after 3 half-lives (1) $925 / 8=115.625(\mathrm{~g})$ Determines average energy released per second (1) $115.625 \times 0.54=62.4(\mathrm{~J})$	allow repeated division by 2 allow ecf from step 2 for 1 mark (mass of Pu-238 after1 half-life $925 / 2=462.5(\mathrm{~g})$) allow ecf from 1 half-life or from step 3	(4)

Question number	Answer		Mark
6(c)(i)	An answer that combines the following points of application of knowledge and understanding to provide a logical description: - proton number/atomic number decreases by 1 (1) - nucleon number/mass number remains unchanged (as p and n have same mass and mass of electron is (assumed) negligible) (1)		(2)
Question number	Answer		Mark
6(c)(ii)	C		(1)
Question number	Answer An answer that combines the following points of understanding to provide a logical description: - measurement of time between(or at) two positions using suitable timing equipment (1) - measurement of suitable distance along the runway with metre rule (1) - measurement of vertical height to starting position (1) - repeats AND averages AND use of a correct equation (1)	Additional guidance	Mark
7(a)		allow stopwatch, light gates minimum is 0.5 m metal tape measure average speed = distance/time OR average speed $=$ (speed at A - speed at B)/2	(4)

Question number	Answer	Additional guidance	Mark
7(b)(i)	Substitution of correct data from graph and mass conversion (1) $0.5 \times 0.65 \times(0.61)^{2}$ Answer (1) $0.12(\mathrm{~J})$	maximum of 1 mark if mass in g used	allow tolerance of ± 0.2 for speed

$\left.\begin{array}{|l|l|l|l|}\hline \begin{array}{l}\text { Question } \\ \text { number }\end{array} & \text { Answer } & \text { Additional guidance } & \text { Mark } \\ \hline \text { 7(b)(ii) } & \text { • } \begin{array}{l}\text { Tangent to the graph at } \\ h=0.1(1)\end{array} & \begin{array}{l}\text { either seen on graph or } \\ \text { suitable pairs of values of } \\ \text { Answer in the region 3.5 to } \\ 3.6\end{array} & \\ \Delta v \text { and } \Delta h\end{array}\right]$

Question number	Answer	Mark
7(b)(iii)	An answer that combines points of interpretation/evaluation to provide a logical description: - for each change in height, as the height increases the speed of the trolley increases the greatest change in speed is between the change in height from 0.04 m to 0.9 m	$\mathbf{(2)}$

Question number	Answer	Additional guidance	Mark
$\mathbf{7 (c)}$	An answer that combines the following points to provide a logical description of the plan/method/experiment: - identifies control variables (1) uses at least 3 different surfaces (1) calculates average speed for each surface and repeats (1)	constant height, constant slope, constant starting points and same length of surface	

Question number	Answer	Mark
$\mathbf{8 (a) (i)}$	An explanation that combines identification via a judgement (2 marks) to reach a conclusion via justification/reasoning (2 marks): - intensity of radiation increases with temperature (1) - the distribution of the emitted wavelengths of radiation is affected by temperature (1) at low temperatures the intensity of radiation emitted is low and the (range of) emitted wavelengths (of radiation) are high so the lamp appears dull red (1) at higher temperatures the intensity of the radiation is greater and the (range of) emitted wavelengths (of radiation) are low so the lamp appear to be brighter and less red (1)	

Question number	Answer	Additional guidance	Mark
8(a)(ii)	Substitution and rearrangement to find $k(1)$ $k=85000 \times 0.70^{2}$	41650	
	Substitution to find new count rate (1) count rate $=\underline{85000 \times 0.70^{2}}$ Answer (1) 1.3^{2} 25000 (counts per minute)	24645 (counts per minute)	(3)

Question number	Indicative content	Mark
*8(b)	Answers will be credited according to candidate's deployment of knowledge and understanding of the material in relation to the qualities and skills outlined in the generic mark scheme. The indicative content below is not prescriptive and candidates are not required to include all the material which is indicated as relevant. Additional content included in the response must be scientific and relevant. AO2 (6 marks) - the soot could make the ice black - black ice will absorb more IR radiation than white ice - black ice might cause an increase in the temperature of the Earth because absorption of IR radiation (can) cause an increase in temperature - reduction in soot might reduce warming because the ice will not be as black/will be more white - shiny sulfates (are good at) reflecting/scattering IR radiation which means less heat absorbed - sulfates scatter the IR and this reduces the amount of IR radiation falling on the Earth - sulfates might cause a decrease in the temperature of the Earth - reduction in sulfates might increase warming	(6)

Level	Mark	Descriptor
	0	No rewardable material.
Level 1	1-2	- The discussion attempts to link and apply knowledge and understanding of scientific ideas, flawed or simplistic connections made between elements in the context of the question. (AO2) - Lines of reasoning are unsupported or unclear. (AO2)
Level 2	3-4	- The discussion is mostly supported through linkage and application of knowledge and understanding of scientific ideas, some logical connections made between elements in the context of the question. (AO2) - Lines of reasoning mostly supported through the application of relevant evidence. (AO2)
Level 3	5-6	- The discussion is supported throughout by linkage and application of knowledge and understanding of scientific ideas, logical connections made between elements in the context of the question. (AO2) - Lines of reasoning are supported by sustained application of relevant evidence. (AO2)

Question number	Answer	Additional guidance	Mark
9(a)	An explanation that makes reference to: identification - knowledge (1 mark) and reasoning /justification - knowledge (1 mark):	the wavelength decreases because wavelength is the ratio of wave velocity to frequency (1) and the wave velocity reduces at the boundary but the frequency remains the same (1)	allow the same number of waves per second arrive at the boundary as leave it for no change in frequency at the boundary

Question number	Indicative content	Mark
$\mathbf{9 (b)}$	Answers will be credited according to candidate's deployment of knowledge and understanding of the material in relation to the qualities and skills outlined in the generic mark scheme. The indicative content below is not prescriptive and candidates are not required to include all the material which is indicated as relevant. Additional content included in the response must be scientific and relevant. \quad AO1 (6 marks)	
	- point A reaches the glass block before point B - A moves into the glass block and slows down - as light travels more slowly in glass than in air - B is still in air so is travelling faster than A this causes part of the wavefront to change direction/refract - by the time B reaches the block it will have travelled further than A - therefore, the whole wavefront changes direction/refracts towards the normal - at the other face, A exits first so the process is reversed - the wavefront changes direction again so it is parallel to its original direction/refracts away from the normal	(6)

Level	Mark	Descriptor
	0	No rewardable material.
Level 1	$1-2$	-Demonstrates elements of physics understanding, some of which is inaccurate. Understanding of scientific ideas lacks detail. (AO1) Presents an explanation with some structure and coherence. (AO1) Level 2 Level 3 3 5-6
Demonstrates physics understanding, which is mostly relevant but may include some inaccuracies. Understanding of scientific ideas is not fully detailed and/or developed. (AO1) Presents an explanation that has a structure which is mostly clear, coherent and logical. (AO1)		
Demonstrates accurate and relevant physics understanding throughout. Understanding of the scientific ideas is detailed and fully developed. (AO1) Presents an explanation that has a well-developed structure which is clear, coherent and logical. (AO1)		

Question number	Answer	Additional guidance	Mark
9(c)	Substitution into $v=\frac{s}{t}$ to find v (1) $v=\frac{1.5 \times 10^{11}}{500}$ Substitution into $v=f \times \lambda$ and unit conversion (1) $v=\frac{1.5 \times 10^{11}}{500}=f \times 670 \times 10^{-9}$ Transposition (1) Rearrangement (1) $f=\frac{\left(1.50 \times 10^{11}\right)}{500 \times\left(670 \times 10^{-9}\right)}$ Answer (1) $4.5 \times 10^{14}(\mathrm{~Hz})$	s is distance award full marks for correct numerical answer without working maximum 3 marks if λ in nm $4.4776 \times 10^{14}(\mathrm{~Hz})$	(4)

Question number	Answer	Additional guidance	Mark
$\mathbf{1 0 (a) (\text { i) }}$	An explanation that combines identification - knowledge (1 mark) and reasoning/justification - knowledge (3 marks): -causes 2 or 3 neutrons to be released (1) (and) one or more of these (released) neutrons are absorbed by other (U) nuclei (1) Unucleus `splits up'/eq which cause further fission of U nuclei (1) and release further neutrons that can be absorbed, causing a chain reaction (1)	(4)	
Question number	Answer	Mark	
:---	:---	:---	
$\mathbf{1 0 (a) (i i)}$	Idea that to get a chain reaction the particle that impacts the nucleus must be the same as the one released (1)	(1)	
Question number	Answer	Additional guidance	Mark
:---	:---	:---	:---
$\mathbf{1 0 (b)}$	An explanation that combines identification - knowledge (1 mark) and reasoning/justification - knowledge (2 marks): -reaction will slow down (1) because there are fewer fissions (1) because fission more likely with slow neutrons (1)allow feactor shuts down/eq fission requires slow thermal neutrons for slow neutrons		
Question number	Answer	Mark	
:---	:---	:---	
$\mathbf{1 0 (c)}$	An answer that combines the following points of understanding to provide a logical description:		
- the reactor is surrounded by a coolant (1)			
the thermal energy release from the chain reaction heatsthe coolant (1) the hot coolant is used to generate steam which is used to drive the turbine (1)	(3)		

