Pearson

Mark Scheme (Final)

Summer 2017

Pearson Edexcel GCSE

In Physics (5PH1H) Paper 1H

Edexcel and BTEC Qualifications

Edexcel and BTEC qualifications are awarded by Pearson, the UK's largest awarding body. We provide a wide range of qualifications including academic, vocational, occupational and specific programmes for employers. For further information visit our qualifications websites at www.edexcel.com or www.btec.co.uk. Alternatively, you can get in touch with us using the details on our contact us page at www.edexcel.com/contactus.

Pearson: helping people progress, everywhere

Pearson aspires to be the world's leading learning company. Our aim is to help everyone progress in their lives through education. We believe in every kind of learning, for all kinds of people, wherever they are in the world. We've been involved in education for over 150 years, and by working across 70 countries, in 100 languages, we have built an international reputation for our commitment to high standards and raising achievement through innovation in education. Find out more about how we can help you and your students at:www.pearson.com/uk

Summer 2017
Publications Code 5PH1F_01_1706_MS
All the material in this publication is copyright
© Pearson Education Ltd 2017

General Marking Guidance

- All candidates must receive the same treatment. Examiners must mark the first candidate in exactly the same way as they mark the last.
- Mark schemes should be applied positively. Candidates must be rewarded for what they have shown they can do rather than penalised for omissions.
- Examiners should mark according to the mark scheme not according to their perception of where the grade boundaries may lie.
- There is no ceiling on achievement. All marks on the mark scheme should be used appropriately.
- All the marks on the mark scheme are designed to be awarded. Examiners should always award full marks if deserved, i.e. if the answer matches the mark scheme. Examiners should also be prepared to award zero marks if the candidate's response is not worthy of credit according to the mark scheme.
- Where some judgement is required, mark schemes will provide the principles by which marks will be awarded and exemplification may be limited.
- When examiners are in doubt regarding the application of the mark scheme to a candidate's response, the team leader must be consulted.
- Crossed out work should be marked UNLESS the candidate has replaced it with an alternative response.

Question number	Answer	Acceptable answers	Marks
1 (a) (i)	\boxtimes B inverted and real The only correct answer is B A t is not correct because he image is never upright in this arrangement C is not correct because a virtual image cannot be obtained on a screen D is not correct because a virtual image cannot be obtained on a screen		

Question number	Answer	Acceptable answers	Marks
1 (a) (ii)	image distance when object is a long way away(1)	distance between (centre of) lens and \{focal point/principal focus/ (point) where parallel rays meet (after lens) \} NOT just where the image is formed 1/ power(of lens)	(1)

Question number	Answer			Acceptable answers	Marks
1 (a) (iii)	$14 \pm 2(\mathrm{~cm})$	12 to $16(\mathrm{~cm})$	(1)	0.12 to $0.16(\mathrm{~m})$	(1)

Question number	Answer	Acceptable answers	Marks
1 (b)	Description to include two of the following for a reflecting telescope: converging mirror	(1) concave mirror(s) mirror(s) rather than lens(es) are used	(mirror) is used as an objective (1) a real image is formed (by reflection) (1)
to collect light allow answers in terms of greater aperture for one mark			

| Question
 number | Answer | Acceptable
 answers | Marks |
| :--- | :--- | :---: | :--- | :---: |
| 1 (c) (1) | Explanation linking:
 relevant invention
 eg 1.radio telescope
 2. camera | (named) space
 telescope /
 adaptive optics /
 radio etc telescope
 / cameras / arrays
 /rover | |
| | how it improves things - linking
 directly to first mark point (2)
 eg 1.new information as collects
 data/signals from other regions of
 em spectrum
 2. brighter image as collects light
 over long period of time | | (3) |

Question number	Answer	Acceptable answers	Marks
2 (a)	One mark for each line correct	if more than 2 lines used deduct 1 mark for each extra line	(2)

Questio \mathbf{n} number	Answer	Acceptable answers	Mark \mathbf{s}
2 (b)	Explanation linking:		
	current changes direction for P (1) but current does not change direction for Q (1)	In P current has both +ve and -ve values /(values/graph/line) above and below zero	Q always + ve / always above zero

Question number	Answer	Acceptable answers	Marks
2 (c)	transformers work on ac	transformers do not work with d.c.	(1)

(Total for Question 2 = 9 marks)

Question number	Answer	Acceptable answers	Marks
3 (a)(i)	区 C 2500 joules per second		
The only correct answer is C			
	A is not correct because amps per volt is not equivalent to joules per second B is not correct because joules per amp is not equivalent to joules per second		
	D is not correct because joules per volt is not equivalent to joules per second		(1)

Question number	Answer	Acceptable answers	Marks
3 (a)(ii)	substitution (1)	Award full marks for correct answer with no working	
	$\frac{2.5 \times 12 \times 20}{60}$ allow 600 (p) for 1 mark 10 (p)		

Question number	Answer	Acceptable answers	Marks
3 (a)(iii)	substitution (1)	Award full marks for correct answer with no working	
	$2500=230 \times 1$	Allow either order for transformation and substitution	
transformation (1)	ignore powers of 10 until evaluation		
	$\frac{2500}{230}$	10.87 (A) numbers that round to 11 (A)	(3)

Question number	Answer	Acceptable answers	Marks
3 (b)(i)	An explanation linking energy \{radiated / emitted / given out/output\} (1) at the same rate as it is taken $\{$ in / from the supply\}/input (1)	allow heat/infrared for energy dependent on first marking point	power radiated/out/output = power supplied/in/input scores 2 marks

Question number	Answer	Acceptable answers	Marks
3 (b)(ii)	An description including		
	(the temperature) falls/drops (1) to a lower equilibrium value (1) $2^{\text {nd }}$ mark depends on 1 t $^{\text {st }}$	accept constant/steady for equilibrium	(2)

Question number	Answer	Acceptable answers	Marks
4 (a)(i)	D Ultraviolet The only correct answer is D A is not correct because infrared is not an ionising radiation B is not correct because microwave is not an ionising radiation C is not correct because radio is not an ionising radiation		

Question number	Answer	Acceptable answers	Marks
4 (a)(ii)	B		
	The only correct answer is B		
A is not correct because graph A does not show that as wavelength increases frequency decreases C is not correct because graph C does not show that as wavelength increases frequency decreases D is not correct because graph D does not show that as wavelength increases frequency decreases			

Question number	Answer	Acceptable answers	Marks
4 (b)	Description to include: from/emitted by radioactive sources/ nuclei (1)	from (nuclei) of unstable atoms or radioactive atoms/isotopes/materials/rocks	randomly /(nuclear) decay/ nuclear reactions/ fission/fusion positron - electron annihilation/collision scores 2
all the time/constantly (1)	(2)		

Question number	Answer	Acceptable answers	Marks
4 (c)	Description to include: a use for X-rays (1) a use for gamma rays (1) further detail about one of them (1)	e.g. X-rays to look at bones/skeleton scores 1 mark to look at/for broken bones scores 2 e.g. gamma sterilise 1 mark sterilise food/ medical equipment 2 marks	

Question number	Answer	Acceptable answers	Marks
4 (d)	substitution (1) $3.0 \times 10^{8}=2.8 \times 10^{19} \times \lambda$ transformation (1) $\frac{3.0 \times 10^{8}}{2.8 \times 10^{19}}$ evaluation $\quad(1)$ $1.1 \times 10^{-11} \quad(\mathrm{~m})$	Award full marks for correct answer with no working Allow either order for transformation and substitution ignore powers of 10 until evaluation $1.07 \times 10^{-11} \quad(\mathrm{~m})$ numbers that round to 1.1×10^{-11} $1.071428571 \times 10^{-11}$ 1×10^{-11}	(3)

Question number	Answer	Acceptable answers	Marks
5 (a)(i)	Description including any two from: (red giant) one/next stage/phase in the life of a star (1)	two clear stages referred to	
	(after) main sequence (1)	similar in mass to the Sun/	expands/ cools/ before white dwarf
hydrogen runs out (1)	fuel runs out/helium fusion starts		

Question number	Answer	Acceptable answers	Marks
5 (a)(ii)	Description including: increase in (observed) wavelength of light /longer (observed) wavelength of light (1)	decrease in (observed) frequency of light / lower (observed) frequency of light ignore moving to the red end of (visible) spectrum.	
	from a galaxy/star moving away (from us) (1)	ignore planets moving away ignore universe expanding	(2)

Question number	Answer	Acceptable answers	Marks
5 (b)	change in λ (1) 478-434 (nm) evaluation (1) $3.04 \times 10^{7} \quad(\mathrm{~m} / \mathrm{s})$	Award full marks for correct answer with no working 44 ignore powers of ten error until evaluation 30414746.54 allow 1 mark max if original λ taken as 478 nm and evaluated to $2.76 \times 10^{7}(\mathrm{~m} / \mathrm{s}) \quad 27615063$	(2)

| Question
 Number | Indicative Content | Mark |
| :--- | :--- | :--- | :--- |
| QWC | *5(c) | A comparison including some of the following points:
 Big Bang theory
 - Universe is expanding
 - Universe had a beginning
 - Universe started with an 'explosion'
 - Universe cooling / density decreasing |
| Steady State | | |

Question number	Answer	Acceptable answers	Marks
6 (a)(i)	B infrasound The only correct answer is B		
	A is not correct because elephants do not communicate using electromagnetic waves of frequency 10 Hz	C is not correct because supersonic refers to a speed greater than that of sound	D is not correct because the frequency of ultrasound is greater than 20000 Hz

| Question
 number | Answer | Acceptable
 answers | Marks |
| :--- | :--- | :--- | :--- | :--- |
| $6(\mathrm{a})(\mathrm{ii})$ | $20000(\mathrm{~Hz})$ | 20 kHz
 a number between
 20000 and 20
 $001(\mathrm{~Hz})$ | |
| | | | (1) |

Question number	Answer	Acceptable answers	Marks
6 (a)(iii)	suggestions which: make reference to frequency (1) idea of below range of human/our hearing (1)	Hz hertz outside/beyond for below	
NOT above			
"too low" must be			
linked to			
frequency			

Question number	Answer	Acceptable answers	Marks
6 (b)	Q D S-waves cannot refract at the boundary The only correct answer is D A is not correct because P-waves can reflect at the boundary	B is not correct because P-waves can refract at the boundary C is not correct because S-waves can reflect at the boundary	(1)

Question Number		Indicative Content ${ }^{\text {a }}$ Mark
QWC	$\begin{array}{\|l\|} \hline * 6 \\ (\mathrm{c}) \end{array}$	A description including some of the following points - Draw two lines from M - Straight - Through ball and centre of instrument - Draw two lines from N - To show limits of directions from each place - Find position/area which is within all three limits
Leve I	0	No rewardable content
1	1-2	- a limited description of method e.g. draw (two) lines from M and (two) lines from N - the answer communicates ideas using simple language and uses limited scientific terminology - spelling, punctuation and grammar are used with limited accuracy
2	3-4	- a simple description of method e.g. draw two straight lines from M and two straight lines from N that appear (by eye) to pass through the ball and the centre of the instrument. Some of the lines cut each other. - the answer communicates ideas showing some evidence of clarity and organisation and uses scientific terminology appropriately - spelling, punctuation and grammar are used with some accuracy
3	5-6	- a detailed description of method e.g. draw two straight lines from M and two straight lines from N that appear (by eye) to pass through the ball and the centre of the instrument. Some of the lines cut each other. AND an approximate area/position shown clearly on the diagram or referred to in the text. - The answer communicates ideas clearly and coherently uses a range of scientific terminology accurately. - spelling, punctuation and grammar are used with few errors

