edexcel

Mark Scheme (Results)
Summer 2016

Pearson Edexcel GCSE in Physics
(5PH2F) Paper 01
Unit P2: Physics for your future

Edexcel and BTEC Qualifications

Edexcel and BTEC qualifications are awarded by Pearson, the UK's largest awarding body. We provide a wide range of qualifications including academic, vocational, occupational and specific programmes for employers. For further information visit our qualifications websites at www.edexcel.com or www.btec.co.uk. Alternatively, you can get in touch with us using the details on our contact us page at www.edexcel.com/contactus.

Pearson: helping people progress, everywhere

Pearson aspires to be the world's leading learning company. Our aim is to help everyone progress in their lives through education. We believe in every kind of learning, for all kinds of people, wherever they are in the world. We've been involved in education for over 150 years, and by working across 70 countries, in 100 languages, we have built an international reputation for our commitment to high standards and raising achievement through innovation in education. Find out more about how we can help you and your students at: www.pearson.com/uk

Summer 2016
Publications Code 5PH2F_01_1606_MS
All the material in this publication is copyright
© Pearson Education Ltd 2016

General Marking Guidance

- \quad All candidates must receive the same treatment. Examiners must mark the first candidate in exactly the same way as they mark the last.
- Mark schemes should be applied positively. Candidates must be rewarded for what they have shown they can do rather than penalised for omissions.
- Examiners should mark according to the mark scheme not according to their perception of where the grade boundaries may lie.
- There is no ceiling on achievement. All marks on the mark scheme should be used appropriately.
- \quad All the marks on the mark scheme are designed to be awarded. Examiners should always award full marks if deserved, i.e. if the answer matches the mark scheme. Examiners should also be prepared to award zero marks if the candidate's response is not worthy of credit according to the mark scheme.
- For questions worth more than one mark, the answer column shows how partial credit can be allocated. This has been done by the inclusion of part marks eg (1).
- Where some judgement is required, mark schemes will provide the principles by which marks will be awarded and exemplification may be limited.
- When examiners are in doubt regarding the application of the mark scheme to a candidate's response, the team leader must be consulted.
- Crossed out work should be marked UNLESS the candidate has replaced it with an alternative response.

Quality of Written Communication

Questions which involve the writing of continuous prose will expect candidates to:

- Write legibly, with accurate spelling, grammar and punctuation in order to make the meaning clear
- Select and use a form and style of writing appropriate to purpose and to complex subject matter
- Organise information clearly and coherently, using specialist vocabulary when appropriate.

Full marks will be awarded if the candidate has demonstrated the above abilities.
Questions where QWC is likely to be particularly important are indicated (QWC) in the mark scheme, but this does not preclude others.

Question Number	Answer	Acceptable answers	Mark
$\mathbf{1 (a i)}$	A a battery (1)		$\mathbf{(1)}$

Question Number	Answer	Acceptable answers	Mark
$\mathbf{1}$ (aii)	an explanation linking:		(2)
	in one direction (1)		
second mark can only be scored			
if first mark is scored			
from negative to positive or			
positive to negative or in			
\{one/same\} \{direction/way\}			
(1)	ignore it goes straight/directly to......	\{charge(s)/electrons \{moving/flowing $\}$ condone current /idea of movement ignore electricity NOT energy/power/voltage/p.d. or atoms	

| Question
 Number | Answer | Acceptable answers | Mark |
| :--- | :--- | :--- | :--- | :--- |
| $\mathbf{1 ~ (b i) ~}$ | substitution:
 0.3×30 (1)
 evaluation
 9 | in all calculations if the candidate gives two
 different methods and writes the wrong
 answer in the answer space award no
 marks
 if the candidate writes correct answer they
 will gain full marks | (3) |
| C (1) | allow both marks for correct answer with no
 working shown.
 allow POT error for 1 mark | (1)
 coulomb(s)/Coulomb(s)
 condone lower case c, amp second or As
 NOT A/s
 unit mark is independent of value | |

Question Number	Answer	Acceptable answers	Mark
$\mathbf{1}$ (bii)	(ammeter reading/it) decreases (1)	accept (ammeter reading or amps or current) less/lower/smaller/weaker or not as big accept charge transferred is less/ lower/decreases ignore slow down ignore references to any other quantities	(1)

Question Number	Answer	Acceptable answers	Mark
$\mathbf{1}$ (biii)	B electrons (1)		(1)

Question Number	Answer	Acceptable answers	Mark
$\mathbf{2 (a)}$	D ions		$\mathbf{1}$

Question Number	Answer		Acceptable answers	Mark
2(b)				
	name of particle	number of particles		
(proton)	2	(1)		
neutron(s)	(2)	(1)		

Question Number	Answer	Acceptable answers	Mark		
$\mathbf{2 (c)}$	a description to include:		$\mathbf{2}$		
	neutron(s) (from the fission) (1)	2/3 neutrons references to the neutron on the diagram colliding with the uranium- 235 nucleus do not score. The answer must imply neutrons from fission (neutrons from fission go on to) another uranium(-235) nucleus (1)	cause more fissions/splitting alternative descriptions of collisions eg hit/bump into/smash into etc condone (go on to) collide with another uranium(-235 atom)		
new neutrons \{cause fission/repeat					
this process scores both marks					
ignore react/chain reaction				\quad	
:---					

Question Number	Answer	Acceptable answers	Mark
2(d)	a description to include any three of the following:	condone atoms for nuclei throughout this item	$\mathbf{3}$
(two light/small) nuclei (1)	named examples \{eg hydrogen/ deuterium/tritium or identifiable symbols fuse (together) (1) (toog/mether)		
(to produce a) heavier nucleus (1)	(to produce) helium/He (nuclei/atoms) condone bigger/larger releasing energy (1)	(make/create/produce\} energy condone gives off energy accept any reasonable form of energy eg thermal/heat or light or KE	

Question Number	Answer	Acceptable answers	Mark
$\mathbf{3 (a)}$	B Weight		$\mathbf{1}$
Question Number Answer Acceptable answers $\mathbf{3 (b i)}$ D the friction forces are the same size as the forward force on the boat $\mathbf{1}$			

Question Number	Answer	Acceptable answers	Mark
$\mathbf{3 (b) (i i)}$	divide any suitable pair of values eg $60 \div 10$ or $120 \div 20(1)$	no credit for speed = distance \div time as on formulae page allow both marks for correct answer with no working shown.	$\mathbf{2}$
	evaluation (1) $6(\mathrm{~m} / \mathrm{s})$	answers in range 5.8 to $6.2(\mathrm{~m} / \mathrm{s})$ allow POT error for 1 mark but not if clear they have multiplied 60 and 10 no marks for a correct evaluation of a wrong pair of numbers eg $140 / 20$ $=7$ scores zero	

Question Number	Answer	Acceptable answers	Mark
3(ci)	substitution (force =) 680×3.8 (1) evaluation (1) $2584(\mathrm{~N})$ (which is about 2600 N)	accept alternative explanations $2600 \div 680$ seen for one mark $=3.82\left(\mathrm{~m} / \mathrm{s}^{2}\right)\left(\right.$ which is about $3.8\left(\mathrm{~m} / \mathrm{s}^{2}\right)$) for both marks OR $2600 \div 3.8$ seen for one mark $=684(.2)(\mathrm{kg})$ (which is about $680(\mathrm{~kg})$) for both marks 2580 (N) ignore $2600(\mathrm{~N})$ for the second mark accept 2584 (N) with no working seen for both marks	2

Question Number	Answer	Acceptable answers	Mark
3(c)(ii)	combining vectors (1)	$2600+1200$ or 2600 - 1200 or 1200-2600 not divide or multiply eg 1400 (N) for 1 mark	$\mathbf{2}$
evaluation (1) 3800 (N)	allow both marks for correct answer with no working shown. accept 3784 (N)		

Question Number	Answer	Acceptable answers	Mark
3(d)	an explanation linking $1^{\text {st }}$ marking point with either of the $2^{\text {nd }}$ two: - driver (exerts an unbalanced) force (on the boat) (1) second mark can only be scored if first mark is scored - (in the) opposite direction (to which he moves) (1) - (unbalanced force) accelerates the boat (away from bank) (1)	ignore 'causing the boat to move away from the bank' unless linked to push from driver as this is in the question ignore references to currents in river driver (produces) a push/thrust (on the boat) backwards/(in a direction) away (from the bank/himself) take negative velocities/speeds as away from bank action/reaction (forces) (unbalanced force) changes the speed/ momentum (of boat) explanations in terms of momentum can score up to two marks	2

Question Number	Answer	Acceptable answers	Mark
4(ai)	C sterilising hospital equipment		(1)

Question Number	Answer	Acceptable answers	Mark
4(aii)	an explanation linking any two of the following: - (gamma rays are) ionising (1) - (gamma rays are very/highly) penetrating (1) - cause \{DNA/cells\} to mutate (1) - cause cancer (1)	accept reverse arguments eg difficult to shield against as reverse to penetrating ignore radioactive ignore high energy as in stem penetrate body/tissue/skin/cells/ paper /aluminium/lead accept damage your insides for idea of penetration only mutates/damages \{DNA/cells/tissue/ organs\} condone kills cells/cause mutation(s) ignore harm cells/kill you tumours damage cells inside your body scores two marks for damage cells and penetration	(2)

Question Number	Answer	Acceptable answers	Mark
4(aiii)	idea of halving mass (1)	$1(.00)(\mathrm{mg})$ accept idea of 2 half-lives for this mark	(2)
	$0.5(0)(\mathrm{mg})(1)$	ignore $60 \div 2$ AND $10 \div 2$ for this mark allow both marks for correct answer with no working shown. no power of ten error on this item	

Question Number	Answer	Acceptable answers	Mark
4(aiv)	any one from: - use a lead (-lined) box (1) - warning signs (1) - restricted access owtte (1) - locked room/cupboard (1)	ignore references to temperature/safety goggles/gloves/don't touch it/keep it at a distance/protective clothing/(face) mask sealed/secure container eg metal-lined box or in concrete (block) or behind lead (walls) keep people away / keep away from people	(1)

Question Number	Answer	Acceptable answers	Mark
4(b)(i)	any two advantages from: - no carbon dioxide (produced) (1) - no \{sulphur dioxide/nitrogen oxides\} (produced) (1) - conserves fossil fuels - reduces dependence on foreign supplies of energy (1) - good safety record (under normal operating conditions) (1) - uses less fuel (1)	less/no \{greenhouse gases/global warming\} less/no \{acid rain/atmospheric pollution\} condone no harmful gases released ignore less pollution fossil fuel (reserves) will last longer owtte condone nuclear fuel (reserves) will last longer than (those for fossil fuels) accept nuclear power is more efficient (per kg of fuel used) ignore references to more power/reliability/energy/electricity generated or cost and vague terms such as environmentally friendly ignore nuclear energy is (a) renewable (energy source)	(2)

Question Number	Answer	Acceptable answers	Mark
4(b)(ii)	a description including any two from: idea of initial treatment (1)	(radioactive waste/fuel rods/it) under water or vitrification any description of immobilising waste by combining with inert material eg put it in a concrete block/glass sealing in (stainless) steel (cylinder) condone suitable (sealed) \{cylinder/box/ container/barrel\} eg metal barrel	(2)
idea of containment (1)			
idea of long term storage or			
reprocessing (1)	(long term) storage (deep) underground put in (salt/coal) mines or any underground cavern (radioactive) waste is reprocessed/turned into new fuel can be combined with any of the above points to score up to two marks ignore keep it away from people/houses ignore dump it in the sea		

Question Number	Answer	Acceptable answers	Mark
$\mathbf{5 (a) (i)}$	substitution: $6.0 \div 0.4$ (1) evaluation $15(\Omega) \quad(1)$	(2)	

Question Number	Answer	Acceptable answers	Mark
$\mathbf{5 (a) (i i)}$	substitution: 0.4×6.0 (1) evaluation $2.4(W)$ (1) allow both marks for correct answer with no working shown allow power of ten error for max 1 eg 0.24 (W) or 0.024 (W) or 240 (W) accept fractions eg 12/5		

Question Number	Answer	Acceptable answers	Mark
5(a)(iii)	substitution: $\begin{equation*} 0.4 \times 6.0 \times 40 \tag{1} \end{equation*}$ evaluation 96 (J)	2.4×40 ecf from 5(a)(ii) ie answer to 5aii x 40 correctly evaluated gains both marks allow both marks for correct answer with no working shown allow power of ten error for max 1 mark eg 9.6 (J) or 0.96 (J) or $960(\mathrm{~J})$ or 9600 (J)	(2)

Question Number		Indicative Content	Mark
QWC	*5(b)	a description including some of the following points - resistance of filament changes slowly at low currents - values of resistance taken from graph - resistance of filament almost constant at low currents - comparison of lamp resistance values at different currents e.g. resistance of lamp 100\% greater at 0.2 A compared to that at 0.1 A or double that at 0.1 A - resistance of lamp increases with increasing current - higher currents produce higher temperatures/heating in lamp - resistance of lamp increases with increasing temperature - resistance of thermistor decreases with temperature - rate at which resistance of thermistor decreases is lower at higher temperatures - values of thermistor resistance taken from graph - comparison of thermistor resistance values at different temperatures - rate at which resistance of thermistor decreases is greater at lower temperatures - idea of resistance of thermistor halving every 10 degrees C NOTE: In the absence of any other rewardable content: resistance of lamp has a positive correlation AND resistance of thermistor has a negative correlation is only acceptable for level 1: 2 marks and does not contribute to marks at higher levels	(6)
Level	0	No rewardable content	
1	1-2	- a limited description giving one fact OR two simple statements the graphs e.g. The resistance of thermistor decreases with temperature OR resistance of lamp increases with current OR the resistance of the lamp increases AND the resistance of thermistor decreases - the answer communicates ideas using simple language and use limited scientific terminology - spelling, punctuation and grammar are used with limited accura	about f the cy

2	3-4	- a simple description giving more than one fact, about resistance of the filament lamp or thermistor OR at least one fact about both. e.g. The resistance of the lamp increases with current, the resistance of the thermistor decreases with temperature. OR The resistance of lamp is almost steady at low current but increases at high(er) currents. OR The resistance of the thermistor decreases from 160Ω to almost zero (at $50^{\circ} \mathrm{C}$). - the answer communicates ideas showing some evidence of clarity and organisation and uses scientific terminology appropriately. - spelling, punctuation and grammar are used with some accuracy.
3	5-6	- a detailed description giving more than two facts about the resistance of either device OR a description involving more than one fact about the resistance of one component AND at least one fact about the resistance of the other component. e.g. The resistance of lamp is almost steady at first. This resistance is about 25 ohms. The resistance increases at high(er) currents. OR Higher currents produce higher resistance in lamp. The resistance of the lamp increases rapidly after 0.1. The thermistor's resistance gets lower as the temperature gets higher. - the answer communicates ideas clearly and coherently uses a range of scientific terminology accurately - spelling, punctuation and grammar are used with few errors.

Question Number	Answer	Acceptable answers	Mark
$\mathbf{6 (a) (\mathbf { i) }}$	(driver was) reacting (to danger) (1)	thinking (about stopping) / getting ready (to brake) condone (it is the driver's) reaction time condone thinking distance/time accept speed is constant/continues at steady speed	(1)
		ignore references to braking/slowing unless clearly referring to A-B	

Question Number	Answer	Acceptable answers	Mark
$\mathbf{6 (a) (i i)}$	substitution $700 \times 60(1)$	allow one mark for evaluation of 55300 (J) (ie using distance of 79 m)	
	evaluation (1)		
$42000(\mathrm{~J})$ or $42 \mathrm{k}(\mathrm{J})$	allow both marks for correct answer with no working shown. allow power of ten error for max 1 mark eg 42 (J) or 420 (J) or 4200 (J) or 420 $000(\mathrm{~J})$	(2)	

Question Number	Answer	Acceptable answers	Mark
6(a)(iii)	an explanation linking any three of the following: same thinking distance (1) braking distance increases (1) (so) greater (stopping) distance (1) greater mass (1) (so) greater momentum OR greater kinetic energy (1) more work done by brakes (1) for same (braking) force (1)	accept reverse argument ignore references to gravitational and friction forces between tyres and surface condone references to time for distances eg same thinking time brakes (still) applied at B C is further (away) condone longer for further accept longer (stopping) distance condone takes longer to stop it's longer scores 1 mark as question asks about stopping distance ignore slower \{braking/stopping\} distance ignore heavier as this idea is in the stem brakes \{work harder/transfer more energy\} condone brakes use more energy braking force is (always) 700 N	(3)

Question Number		Indicative Content	Mark
QWC	*6(b)	an explanation linking some of: - air bags are released when the car stops suddenly / is in a crash OR airbags inflate rapidly - people have momentum / kinetic energy - (when car stops/brakes suddenly or is in an accident) the driver keeps moving (forwards) - force is needed to reduce (the driver's) momentum / KE to zero - force $=$ rate of decrease of momentum - airbags reduce momentum gradually - air bags increase the time taken for people to stop - this reduces the deceleration/speed decreases at a slower rate - air bags increase the distance through which stopping force acts - force/impact on people is reduced NOTES: condone absorb the force / impact for reduce the force condone driver/passenger stops (more) slowly for reduces deceleration ignore references to crumple zones and seat belts In the absence of any other rewardable content: references to cushioning /break your fall or stop you hitting the dashboard/steering wheel/windscreen/something hard are only acceptable for level 1: 2 marks and do not contribute to marks at higher levels	(6)
Level	0	No rewardable content	
1	1-2	- a limited explanation which gives one relevant fact about how inj are reduced e.g. air bags are released when the car crashes OR airbags stop the driver slowly OR there is a smaller impact/force (on the passenger) - the answer communicates ideas using simple language and uses scientific terminology - spelling, punctuation and grammar are used with limited accuracy	uries mited
2	3-4	- a simple explanation giving more than one fact about how injuries reduced e.g. air bags are released when the car crashes. The impact/force the driver/passenger) is less. OR the driver keeps moving (forwards). The airbag inflates rapidly - the answer communicates ideas showing some evidence of clarity organisation and uses scientific terminology appropriately - spelling, punctuation and grammar are used with some accuracy	are (on dly. and
3	5-6	- a detailed explanation giving more than two facts about how injuries are reduced e.g. air bags inflate rapidly and increase the time it takes the dri stop. This reduces the force (on the driver). OR air bags are released when the car crashes. The force (on the driver/passenger) is less as the bag stops them slowly. OR the time taken (for the driver) to stop is increased. This ma the deceleration smaller and so the force (on the passenger) is le - the answer communicates ideas clearly and coherently uses a ran scientific terminology accurately - spelling, punctuation and grammar are used with few errors	ries ver to e kes s. ge of

