edexcel "

Mark Scheme (Results)

Summer 2016

Pearson Edexcel GCSE in
Chemistry (5CH3H) Paper 01
Unit C3: Chemistry in Action

Edexcel and BTEC Qualifications

Edexcel and BTEC qualifications are awarded by Pearson, the UK's largest awarding body. We provide a wide range of qualifications including academic, vocational, occupational and specific programmes for employers. For further information visit our qualifications websites at www.edexcel.com or www.btec.co.uk. Alternatively, you can get in touch with us using the details on our contact us page at www.edexcel.com/contactus.

Pearson: helping people progress, everywhere

Pearson aspires to be the world's leading learning company. Our aim is to help everyone progress in their lives through education. We believe in every kind of learning, for all kinds of people, wherever they are in the world. We've been involved in education for over 150 years, and by working across 70 countries, in 100 languages, we have built an international reputation for our commitment to high standards and raising achievement through innovation in education. Find out more about how we can help you and your students at:
www.pearson.com/uk

Summer 2016
Publications Code 5CH3H_01_1606_MS
All the material in this publication is copyright
© Pearson Education Ltd 2016

General Marking Guidance

- All candidates must receive the same treatment. Examiners must mark the first candidate in exactly the same way as they mark the last.
- Mark schemes should be applied positively. Candidates must be rewarded for what they have shown they can do rather than penalised for omissions.
- Examiners should mark according to the mark scheme not according to their perception of where the grade boundaries may lie.
- There is no ceiling on achievement. All marks on the mark scheme should be used appropriately.
- \quad All the marks on the mark scheme are designed to be awarded. Examiners should always award full marks if deserved, i.e. if the answer matches the mark scheme. Examiners should also be prepared to award zero marks if the candidate's response is not worthy of credit according to the mark scheme.
- For questions worth more than one mark, the answer column shows how partial credit can be allocated. This has been done by the inclusion of part marks eg (1).
- Where some judgement is required, mark schemes will provide the principles by which marks will be awarded and exemplification may be limited.
- When examiners are in doubt regarding the application of the mark scheme to a candidate's response, the team leader must be consulted.
- Crossed out work should be marked UNLESS the candidate has replaced it with an alternative response.

Quality of Written Communication

Questions which involve the writing of continuous prose will expect candidates to:

- Write legibly, with accurate spelling, grammar and punctuation in order to make the meaning clear
- \quad Select and use a form and style of writing appropriate to purpose and to complex subject matter
- Organise information clearly and coherently, using specialist vocabulary when appropriate.

Full marks will be awarded if the candidate has demonstrated the above abilities.

Questions where QWC is likely to be particularly important are indicated (QWC) in the mark scheme, but this does not preclude others.

Question number	Answer	Notes	Marks
1 (a) (i)	A		1

| Question
 number | Answer | Notes | Marks |
| :---: | :---: | :---: | :---: | :---: |
| 1 (a) (ii) | D | | 1 |

Question number	Answer	Notes	Marks
1 (b)	A description including: heat/ evaporate/ boil (the sample) (1) solid/ salt /(lime)scale/ residue/ calcium carbonate (1) M2 dependent on M1	Ignore any tests for ions	2

Question number	Answer	Notes	Marks
1 (c)	An explanation linking: ion-exchange (resin/column) (1) $\left\{\mathrm{Ca}^{2+} / \mathrm{Mg}^{2+}\right.$ (ions) $\}$ are exchanged for $\left\{\mathrm{Na}^{+} / \mathrm{H}^{+}\right.$(ions) $\}$ (1) OR add sodium carbonate/ bath salts (1) $\left\{\mathrm{Ca}^{2+} / \mathrm{Mg}^{2+} \text { (ions) }\right\}$ react with carbonate ions to form a precipitate / $\left\{\mathrm{CaCO}_{3} / \mathrm{MgCO}_{3}\right\}$ precipitates out OR distil water/ distillation (1) pure water distils/ ions causing hardness remain behind (1)	If M1 scored, then allow atoms/ Ca/ Mg/ H instead of ions in M2 If M1 not scored, particles exchanged must be ions or show charges (ion formula need not be correct but must be a positive ion of Ca or Mg) (one of each pair needed) allow alternatives to exchange eg displace, replace, swap etc allow trade names eg Calgon For distillation: M2 depends on M1, except reject fractional distillation for M1, but mark on	2

Question number	Answer	Notes	Marks
1 (d)	An explanation linking: PROBLEM scum / (lime)scale / fur / lather is \{harder to get/ less\} (1) with relevant linked EXPLANATION waste of energy / appliance less efficient / blocked pipes / blocked boiler / damages appliance need to use more soap or shampoo / waste of soap	allow chemical names ignore cost unless linked to these reasons or need to use water softener ignore cost unless linked to more soap etc ignore taste ignore appearance of scale or requirement to clean	2

Question number	Answer	Notes	Marks
2 (a) (i)	white (1)	If additional responses are given (eg fizzing, colour changes) then give max 1.	2
mark independently			

Question number	Answer	Notes	Marks
2 (a)	(ii)	$\mathrm{D} \mathrm{Ag}^{+}+\mathrm{Cl}^{-} \rightarrow \mathrm{AgCl}$	

Question number	Answer	Notes	Marks
2 (a) (iii)	A description including: QUALITATIVE (identity of) what is present/ which ions present/ Cl- present / what type of substance present (1)	ref. to blood not required ignore 'it's descriptive' 'no numbers'	2
QUANTITATIVE how much is present / concentration / amount /gives a value (1)	ignore 'has numbers' (note: just the word quantity is not enough)		

Question number	Answer	Notes	Marks
2 (b)	A description including add (sodium) hydroxide (solution) / OH- (ions) / ammonia (1) IF NO HYDROXIDE/AMMONIA, NO MARKS AWARDED	If additional reagents added, do not score M1 but mark on for M2 and M3	3
(white) precipitate (1)	Add more hydroxide/ excess: then dissolves / goes colourless (solution) / goes clear (1)	reject any description but white for the precipitate for M2	ignore heating

Question number	Answer	Notes	Marks
3 (a)	$\begin{array}{\|l} \hline \mathrm{M}_{\mathrm{r}} \mathrm{NaOH}=23+16+1(=\mathbf{4 0}) \\ \text { ratio } \mathbf{2 4} / \mathbf{4 0}(1) \\ 24 / 40 \times 4\left(=2.4 \mathrm{dm}^{3}\right)(1) \tag{1} \end{array}$ OR $\mathrm{M}_{\mathrm{r}} \mathrm{NaOH}=23+16+1$ (=40) (1) moles $\mathrm{NaOH}=\mathbf{4 / 4 0}(=0.1)$ (1) $0.1 \times 24(1)\left(=2.4 \mathrm{dm}^{3}\right)$ OR $23+16+1(=40) \mathrm{g} \mathrm{NaOH}$ (1) gives $24 \mathrm{dm}^{3}$ ammonia (1) $24 \times 4 / 40\left(=2.4 \mathrm{dm}^{3}\right)$ ammonia (1) OR Mass of ammonia $=1.7(\mathrm{~g})(1)$ Moles of ammonia $=1.7 / 17=\mathbf{0 . 1}$ (1) $0.1 \times 24(1)\left(=2.4 \mathrm{dm}^{3}\right)$	2.4 as final answer scores 3 [use answer line unless blank] ecf from incorrect M_{r} mol of $\mathrm{NaOH}=0.1$ will score 2 ecf from moles of ammonia units not required but penalise incorrect units for M3	3

Question number	Answer	Notes	Marks		
3 (b) (i)	An explanation linking: forward reaction and backward reaction occur (at the same time) /reaction goes in both directions / reversible reaction (1) at same rate / \{amounts/ concentrations\} of each substance do not change (1) mark independently	ignore reactants and products both present	ignore general expressions such as 'reactions cancel out' ‘no overall effect'		
allow 'speed' for 'rate'				\quad	rate of forward reaction
:---					
= rate of backward					
reaction will score 2	\(\quad\left\{\begin{array}{l} 				

\hline\end{array}\right.\)

Question number	Answer	Notes	Marks
3 (b) (ii)	An explanation linking: if temperature were higher: lower equilibrium yield / equilibrium moves left / reverse reaction favoured / backward reaction favoured/ reactants favoured / ORA (1) because a higher temperature favours endothermic reaction / ORA (1)	any comments on cost or safety to be ignored	2

Question number	Answer	Notes	Marks
3 (c)	hydroxide (ion) (1)	ignore any formulae/ symbols on 'name' line. Reject answers with additional words eg 'calcium hydroxide'	2
	OH^{-}(1)	allow HO- reject any other symbols reject OH^{-}oH- Oh', oh- must have- sign and as superscript	

Question number	Answer	Notes	Marks
4 (a)	A sodium chloride crystals		1

Question number	Answer	Notes	Marks
4 (b) (i)	A description including	4	
POWER d.c. supply/ battery/ power pack / pass electricity through (1)	Look at diagram as candidates may add labels which could score all 4 marks	ELECTRODES impure copper anode/positive electrode (1) pure copper cathode/negative electrode (1)	ELECTROLYTE copper sulfate (solution) / Cu²+ (ions in solution) / any soluble copper compound (in solution) (1)
allow unspecified copper salt if in solution			

Question number	Answer	Notes	Marks
4 (b) (ii)	An explanation linking copper: removed from anode / pass into solution / (atoms in electrode) form copper ions (1) deposit/sludge is impurities (1)	allow copper atoms oxidised	allow named unreactive metals eg silver, gold

Question number	Answer	Notes	Marks
$4 \quad$ (c) (i)	An explanation including reduction (1) because (lead ions) gain electrons (1) mark independently	ignore redox for M1	2

Question number	Answer	Notes	Marks
4 (c) (ii)	$2 \mathrm{Br}^{-} \rightarrow \mathrm{Br}_{2}+2 \mathrm{e}^{-}$	allow multiples	2
OR	$2 \mathrm{Br}^{-}-2 \mathrm{e}^{-} \rightarrow \mathrm{Br}_{2}$ Br^{-}on left (charge required) (1) fully correct species including charges (but allow e for e^{-}) with balancing (2)		

	Answer	Notes	Marks
5 (a) (i)	$\begin{aligned} & \mathrm{CH}_{3} \mathrm{COOCH}_{2} \mathrm{CH}_{3} / \\ & \mathrm{CH}_{3} \mathrm{COOCO}_{2} \mathrm{H}_{5} / \\ & \mathrm{C}_{4} \mathrm{H}_{8} \mathrm{O}_{2} \end{aligned}$	Any correct structure - must show all atoms but can be mixed displayed/structural accept CO_{2} for COO allow correct reverses eg $\mathrm{C}_{2} \mathrm{H}_{5} \mathrm{OOCCH}_{3}$ reject other 'isomers'eg $\mathrm{C}_{2} \mathrm{H}_{5} \mathrm{COOCH}_{3}$; $\mathrm{C}_{3} \mathrm{H}_{8} \mathrm{COO}$	1

Question number	Answer	Notes	Marks
5 (a) (ii)	effervescence/ fizzing/ bubbles / solid disappears	allow solid dissolves ignore gas/ CO_{2} given off additional incorrect responses negate this mark (list principle)	1

Question number	Answer	Notes	Marks
5 (b)	A 0.1		1

Question number	Answer Mark
5 (c)*	A explanation to include some of the following points I ndicative content Basic titration - pipette - burette - wash with appropriate solution - acid or alkali in flask - indicator - swirling - use white tile End point - correct starting colour of indicator - controlled addition until indicator changes colour (permanently) - add dropwise near endpoint - correct end colour of indicator - repeat titration until concordant results Obtaining crystals - mix volumes without indicator - warm until crystallisation starts - leave to crystallise - dry between absorbent paper/leave to dry
Level	No rewardable content
1	- a limited description of the titration or the crystallisation - the answer communicates ideas using simple language and uses limited scientific terminology - spelling, punctuation and grammar are used with limited accuracy
2	- a simple description of the titration or the crystallisation OR a limited description of both - the answer communicates ideas showing some evidence of clarity and organisation and uses scientific terminology appropriately; - spelling, punctuation and grammar are used with some accuracy
3	- a detailed description of the titration and the crystallisation - the answer communicates ideas clearly and coherently uses a range of scientific terminology accurately; - spelling, punctuation and grammar are used with few errors

Question number	Answer	Notes	Marks
5 (d)	```moles CH3COOH = 0.01 x 25/1000 (= 0.00025)(1) moles }\textrm{NaOH}=\mathbf{0.00025/ 1:1 ratio (1) volume NaOH = 0.00025 x 1000/0.02 (= 12.5cm) (1) OR 1:1 ratio (1) 25 x 0.01 = vol }\times0.02(1 volume NaOH = 0.00025 x 1000/0.02 (= 12.5cm}\mp@subsup{}{}{3})(1```	12.5 as final answer scores 3 0.0125 or 12500 scores 2 0.00025 not linked to any substance scores 1; linked to NaOH scores 2 apply ecf [delete 1 mark per error] units not required, but penalise incorrect units	3

| Question
 number | Answer | Notes | Marks |
| :--- | :--- | :--- | :--- | :---: |
| 6 (a) | B $\mathrm{C}_{4} \mathrm{H}_{10}$ | | 1 |

Question number	Answer	Notes	Marks
6 (b) (i)	An explanation including AMOUNT OF ETHANOL each drink contains different concentration of ethanol / the whisky contains more alcohol than the beer/ each drink would mean absorbing a different quantity of alcohol (1)	alcohol/ethanol can be used interchangeably allow alternatives to concentration eg strength, \% alcohol, units of alcohol	2
	AFFECT ON BODY RELEVANT TO DRIVER slower reactions / longer reaction time / lowers inhibitions / poorer vision / dizziness / depressant (1)	ignore 'slower reaction time' ignore vague answers eg ability to drive affected / affects brain/ references to drunk or intoxicated	

Question number	Answer	Notes	Marks
6 (b) (ii)	carboxylic acid(s) [both words required]	reject carboxyl group Ignore any formulae	1

Question number	Answer	Notes	Marks
6 (c)	$\mathrm{C}_{3} \mathrm{H}_{7} \mathrm{OH} \rightarrow \mathrm{C}_{3} \mathrm{H}_{6}+\mathrm{H}_{2} \mathrm{O}$ Any two formulae on correct side in equation format = 1 Fully correct balanced equation (allow multiples) $=2$	reject formulae with small letters or non- subscripts eg $\mathrm{h}_{2} \mathrm{O} \mathrm{H2O}, \mathrm{H}^{2} \mathrm{O}, \mathrm{H}_{2} \mathrm{O}, \mathrm{H} 2 \mathrm{o}$	2

| Question
 number | \quad Answer |
| :--- | :--- | :---: |\quad Mark

Pearson Education Limited. Registered company number 872828 with its registered office at 80 Strand, London WC2R ORL

