Surname	Other names
Edexcel GCSE	Centre Number Candidate Number
Chemistry	
Unit Ci: Chemistry	in our world
Unit C1: Chemistry	Foundation Tier
Thursday 1 March 2012 – Time: 1 hour	Foundation Tier

Instructions

- Use **black** ink or ball-point pen.
- **Fill in the boxes** at the top of this page with your name, centre number and candidate number.
- Answer all questions.
- Answer the questions in the spaces provided
 - there may be more space than you need.

Information

- The total mark for this paper is 60.
- The marks for **each** question are shown in brackets
 - use this as a guide as to how much time to spend on each question.
- Questions labelled with an asterisk (*) are ones where the quality of your written communication will be assessed
 - you should take particular care with your spelling, punctuation and grammar, as well as the clarity of expression, on these questions.

Advice

- Read each question carefully before you start to answer it.
- Keep an eye on the time.
- Try to answer every question.
- Check your answers if you have time at the end.

Turn over ▶

PEARSON

The Periodic Table of the Elements

0 4 He helium 2	20 Ne neon 10	40 Ar argon 18	84 Kr krypton 36	131 Xe xeron 54	[222] Rn radon 86	fully
7	19 F fluorine	35.5 CI chlorine 17	80 Br bromine 35	127 	[210] At astatine 85	orted but not
9	16 oxygen 8	32 S sulfur 16	79 Se selenium 34	128 Te tellurium 52	[209] Po polonium 84	/e been repo
r2	14 N nitrogen 7	31 P phosphorus 15	75 As arsenic 33	122 Sb antimony 51	209 Bi bismuth 83	s 112-116 hav authenticated
4	12 carbon 6	28 Si silicon 14	73 Ge germanium 32	Sn tin 50	207 Pb lead 82	mic numbers a
က	11 boron 5	27 AI aluminium 13	70 Ga gallium 31	115 In indium 49	204 T thallium 81	Elements with atomic numbers 112-116 have been reported but not fully authenticated
'			65 Zn zinc 30	112 Cd cadmium 48	201 Hg mercury 80	Eleme
			63.5 Cu copper 29	108 Ag silver 47	197 Au gold 79	Rg roentgenium 111
			59 nickel 28	106 Pd palladium 46	195 Pt platinum 78	Ds dermstadtium
			59 Co cobalt 27	103 Rh rhodium 45	192 Ir iridium 77	[268] Mt meitherium 109
hydrogen			56 Fe iron 26	101 Ru ruthenium 44	190 Os osmium 76	[277] Hs hassium 108
			55 Mn manganese 25	[98] Tc technetium 43	186 Re rhenium 75	[264] Bh bohrium 107
	nass ool umber		52 Cr chromium 24	96 Mo molybdenum 42	184 W tungsten 74	[266] Sg seaborgium 106
Key	relative atomic mass atomic symbol name atomic (proton) number		51 V vanadium 23	93 Nb niobium 41	181 Ta tantalum 73	[262] Db dubnium 105
	relativ ato atomic		48 Ti titanium 22	91 Zr zirconium 40	178 Hf hafnium 72	[261] Rf rutherfordium 104
'			45 Sc scandium 21	89 × yttrium 39	139 La* lanthanum 57	[227] Ac* actinium 89
2	9 Be beryllium 4	24 Mg magnesium	40 Ca caldum 20	Sr strontium 38	137 Ba barium 56	[226] Ra radium 88
~	7 Li Ilithium 3	23 Na sodium 11	39 K potassium 19	85 Rb rubidium 37	133 Cs caesium 55	[223] Fr francium 87

^{*} The lanthanoids (atomic numbers 58-71) and the actinoids (atomic numbers 90-103) have been omitted.

The relative atomic masses of copper and chlorine have not been rounded to the nearest whole number.

Answer ALL questions.

Some questions must be answered with a cross in a box \boxtimes . If you change your mind about an answer, put a line through the box \boxtimes and then mark your new answer with a cross \boxtimes .

Metals

- 1 Most metals occur as compounds found in rocks. Metals can be extracted from some of these rocks.
 - (a) Complete the sentence by putting a cross (☒) in the box next to your answer.

Rocks from which metals can be extracted are called

(1)

- A sand
- **■ B** limestone
- **D** elements
- (b) Aluminium, copper and iron are metals.

Aluminium has a low density, copper is very unreactive and iron is strong when alloyed.

These metals have many uses.

Draw **one** straight line from each metal to a use of the metal.

(3)

metal

aluminium

copper

iron

use

for water pipes

making aircraft bodies

making steel

to surface roads

(c) An experiment was carried out to investigate the conditions necessary for iron to corrode.

Three test tubes, A, B and C, had identical iron nails placed in them as shown.

(2)

(2)

After two weeks,

- the nail in tube A had not rusted
- the nail in tube B had rusted
- the nail in tube C had not rusted.

Explain why the iron nail in test tube B rusted and the iron nails in test tubes A and C did not.

\ /

(d) Scrap iron can be recycled.

Explain an advantage of recycling scrap iron rather than extracting iron from iron compounds found in the Earth.

(Total for Question 1 = 8 marks)

Hydrocarbons

2 (a) Propene is a hydrocarbon.

The diagram shows the structure of a molecule of propene.

(i) Give the names of the **two** elements combined together in propene.

(2)

(ii) Propene is an alkene. Alkenes are unsaturated.

State what you would **see** when orange bromine water is shaken with propene.

(1)

- (b) Propene can be made into a polymer.
 - (i) Complete the sentence by putting a cross (☒) in the box next to your answer.

The name of this polymer made from propene is

- A plastic
- B poly(propane)
- **D** poly(ethene)

(ii) Describe what is meant by the term polymer .	(2)
(iii) Many items made from polymers have a symbol like this.	
75	
PP	
This symbol shows that the polymer can be recycled.	
Explain why it is an advantage to recycle polymers.	(2)
(Total for Quest	ion 2 = 8 marks)

Carbonates

3 The photograph shows a sedimentary rock.

(a) State what evidence in the photograph shows that the rock is a sedimentary rock.

(1)

(b) Limestone is a sedimentary rock. Limestone is mainly calcium carbonate.

Complete the sentences by putting a cross (\boxtimes) in the box next to your answer.

(i) The formula of calcium carbonate is

- A CaO
- B CaC
- ☑ D CaCO₃

X		at is mainly calcium carbonate is	(1)
	A cement		
×	B chalk		
×	C granite		
×	D magma		
dio In a equ The	xide. an experiment to ual masses of the	ntes are heated some of them decompose investigate how fast three metal carbonates are heated. changes observed and the time for carbonates are heated.	ates decompose,
		changes observed	time for carbon dioxide to be detected / s
calc	ium carbonate	none	none detected
zinc	carbonate	white powder turns yellow when hot	236
cop	per carbonate	green powder turns black	40
(i)	•	idence in the table shows that a chemicarbonate is heated.	al reaction occurs (2)

(ii)	Use the information in the table to explain which of the carbonates is the easiest to decompose.	(2)
(iii)	Describe an experiment in which copper carbonate is heated and the gas evolved is tested to show that the gas is carbon dioxide.	(3)
	(Total for Question 3 = 10 m	narks)

The atmosphere

4 The pie charts show the likely composition of the atmosphere 2.5 billion years ago and what its composition is today.

2.5 billion years ago

today

(a) Complete the sentence by putting a cross (\boxtimes) in the box next to your answer.

Gas X is

(1)

- A chlorine
- B hydrogen
- C nitrogen
- **D** radon
- (b) State what produced the gases in the Earth's early atmosphere.

rocks.				(2)
				(<i>=</i>)
d) When primitive plants appe	eared on Earth, th	ne amount of ox	ygen in the	
atmosphere changed.				
Explain why.				
				(2)

(e) The diagram shows a candle floating in a trough of water. A jar was placed over the candle after the candle was lit.

After the candle flame went out, the apparatus was left to cool to room temperature.

Explain how the water level inside the jar at the end of the experiment will have changed compared with the water level inside the jar at the start of the experiment.

			(3)
(f) Candles are made of wax which Octadecane burns in air to form		iter only.	
Write the word equation for th	is reaction.		
			(2)
+	\rightarrow	+	
	(Tot	al for Question 4 = 1	1 marks)

	Fuels	
5	When fuels are burnt, various gases can be given off including carbon monoxide, carbon dioxide, water vapour and sulfur dioxide.	
	(a) Give the name of the element that burns, in oxygen, to form sulfur dioxide.	(1)
	(b) Sulfur dioxide dissolves in water in the atmosphere to form acid rain.	
	State two problems caused by acid rain.	(2)

(c) The graph shows the concentration of carbon dioxide in the atmosphere above Hawaii from 1960 to 2010.

number of cm³ of carbon dioxide in 1 m³ atmosphere

During this time, the average temperature on the Earth has increased by about $0.5\,^{\circ}$ C. Some people think that a change in the amount of carbon dioxide in the atmosphere has caused this change in temperature.

Explain how the data might or might not provide evidence for this idea.

(2)

(d) Complete the sentence by putting a cross (\boxtimes) in the box next to your answer.

Biofuels made from plants can be used instead of fossil fuels. One advantage of using biofuels instead of fossil fuels is that they

- **A** are renewable
- **B** do not produce carbon dioxide when burnt
- ☑ C do not contain carbon
- D do not need land for their production

*(e) An experiment was carried out to determine the amount of heat energy released when different fuels were burned.

Equal masses of four different fuels, A, B, C and D, were burned and the heat energy released was used to raise the temperature of 100 g of water.

The table shows information about each fuel and the results of the experiment.

fuel	state of fuel at room temperature	ease of lighting fuel	relative amount of smoke produced	temperature rise of water/ °C
А	gas	very easy	none	12
В	liquid	very easy	none	20
С	liquid	easy	very little	38
D	liquid	easy	very little	45

Give the advantages and disadvantages of each fuel, explaining which of the four fuels would be best for use in a domestic heater.

(Total for Question 5 = 12 mar	·ks)
	(0)
	(0)

		Acids	
5	Hydrochloric acid is prod		
	(a) Complete the sentence	ce by putting a cross (⊠) in the box next to your answer.	
	A reason why hydrochloric acid is produced in the stomach is to		
	■ A break down for a second or a	ood	(1)
	☑ B improve the tag	taste of the food	
	C neutralise acid	ds	
	D produce gases	25	
		ric acid in the stomach can cause indigestion. ork by neutralising the excess hydrochloric acid in the	
	_	plets contain calcium carbonate. te reacts with the excess hydrochloric acid to form calcium arbon dioxide gas.	1
	Write the word equati	ion for this reaction.	(1)

*(c) Electrolysis can be used to decompose hydrochloric acid, HCl, into its elements. Part of the apparatus that can be used is shown.

(6)

Explain how you would use this apparatus to carry out the electrolysis of hydrochloric acid in the laboratory, naming the products formed. You may add to the diagram to help with your answer.

Explain how the student could test the gases to identify which test tube contains	
which gas.	(3)
	(Total for Question 6 = 11 marks)
	TOTAL FOR PAPER = 60 MARKS

