ST EDWARD'S OXFORD

13+ SCHOLARSHIP EXAMINATION 2017

MATHEMATICS PAPER 1

1 hour 60 marks **Answer all questions.** *Calculators are NOT permitted.* Extra Paper is available

Name: _____

1.	Circle	e all of the frac	ctions below w	hich are smalle	er than $\frac{1}{9}$			
		1 10	<u>4</u> 9	$\frac{1}{2}$	1 100	<u>1</u> 8		
								1 mark
	(b)	To the neares	t per cent, wha	at is <mark>1</mark> as a pe	ercentage?	Circle the neares	t value.	
		0.9%	9%	10%	11%	19%		
	(c)	Complete the	sentences belo	ow:				1 mark
		$\frac{1}{9}$ is half of						
		$\frac{1}{9}$ is two this	rds of					
		There are	ninths	in $6\frac{1}{3}$				3 marks
						ТОТА	L FOR THIS OUE	STION 5

2. The ancient Egyptians used fractions, but only *unit* fractions.

 $\frac{1}{3}$, $\frac{1}{8}$, $\frac{1}{5}$ are all examples of unit fractions; the numerator must be 1 and the denominator is an integer greater than 1.

For $\frac{3}{4}$, they wrote the sum $\frac{1}{2} + \frac{1}{4}$

(a) For what fraction did they write the sum $\frac{1}{2} + \frac{1}{5}$? Show your working.

.....

1 mark

	What was the other? You must show your working	
	what was the other. Tou must show your working.	
		1
		TOTAL FOR THIS QUESTIC
•	Solve these equations:	
	a) $75 + 2t = 100 - 2t$	
	b) $7(5y - 3) - 10 = 2(3y - 5) - 3(5-7y)$	
	x 10-2x	
	c) $\frac{1}{3} + \frac{1}{2} = 3$	
		3 n
		TOTAL FOR THIS OUFSTIC

4. (a) A rectangle is 3a units long and 5b units wide. Write a simplified expression for the area and the perimeter of this rectangle.

Area:	
	1 mark
Perimeter:	

1 mark

(b) A different rectangle has area $12a^2$ and perimeter 14*a*. What are the dimensions of this rectangle?

Dimensions: by

1 mark

TOTAL FOR THIS QUESTION 3

- 5. On a farm many years ago the water tanks were filled using a bucket from a well.
 - (a) The table shows the numbers of buckets, of different capacities, needed to fill a tank of capacity 2400 pints. Complete the table:

Capacity of bucket (pints)	8	10	12	15	16		
Number of buckets			200		150	100	80

(b) Write an equation using symbols to connect **T**, the capacity of the tank, **B**, the capacity of a bucket, and **N**, the number of buckets.

.....

1 mark

(c) Now tanks are filled through a hosepipe connected to a tap. The rate of flow through the hosepipe can be varied. The tank of capacity 4000 litres fills at a rate of 12.5 litres per minute. How long in hours and minutes does it take to fill the tank? Show your working.

..... hours minutes

2 marks

6. In one week James watches television for **26 hours**. In that week, he watched television for the **same** length of time on Monday, Tuesday, Wednesday and Thursday. On each of Friday, Saturday and Sunday, he watched television for **twice as long** as on Monday. How long did he spend watching television on **Saturday**? Write your answer in hours and minutes.

..... hoursminutes

TOTAL FOR THIS QUESTION 2

7. In the diagram (NOT TO SCALE), side AB is the same length as side AC.
Side BD is the same length as side BC. Calculate the value of *x*Show your working.

X =

8. A window is made with two pieces of glass - one is semi-circular, the other is square.

The area of the square is $1m^2$. What is the approximate area of the semi-circle? Give your answer in cm^2 to the nearest whole number.

9.	(a)	Estimate the answer to $\frac{8.62 + 22.1}{5.23}$	
		Give your answer to 1 significant figure .	
	(b)	Estimate the answer to $\frac{28.6 \times 24.4}{5.67 \times 4.02}$	1 mark
			1 mark
			TOTAL FOR THIS QUESTION 2

10. This is a series of patterns with grey and white tiles.

The series of patterns continues by adding

(a) Complete this table:

pattern number	number of grey tiles	number of white tiles
5		
16		
п		

4 marks

(b) Write an expression to show the **total** number of tiles in pattern number *n*. Simplify your expression.

1 mark

TOTAL FOR THIS QUESTION 5

11. Each of these calculations has the same answer, **60**. Fill in the gaps: (a)

$2.4 \times 25 = 60$	$600 \div 10 = 60$
0.24 × = 60	$6 \div \dots = 60$
2400 × = 60	$0.06 \div \dots = 60$

12. (a) Find the values of a and b when p = 10

$$a = \frac{3p^3}{2}$$

<i>a</i> =	
------------	--

 $b = \frac{2p^2(p-3)}{7p}$

b =

1 mark

1 mark

(b) Simplify this expression as fully as possible:

$\frac{3cd^2}{5cd}$

1 mark

TOTAL FOR THIS QUESTION 3

13. (a) *m* is an odd number. Which of the numbers below must be even, and which must be odd? Write 'odd' or 'even' under each one.

1 5

1 mark

14. Solve these simultaneous equations using an algebraic method.

4x + 3y = 21

2x + y = 8

You **must** show your working.

x =..... *y* =

TOTAL FOR THIS QUESTION 3

15. Write the next two terms in each of these sequences, and give the rule for the *nth term*:

 4, 8, 12, 16,, nth term:

 4, 9, 16, 25,, nth term:

TOTAL FOR THIS QUESTION 4

16. To cover a distance of 10km, Jacob runs some of the way at 15 km/hr, and walks the rest of the way at 5 km/hr. His total journey time was 1 hour. How far did Jacob run?

^{17.} David puts five cards face down on a table. All have the same design on the back – on the

other side, one shows a circle, two show squares, and two show triangles. He turns two cards over. What is the probability that at least one of the cards is a square?

TOTAL FOR THIS QUESTION 4

END OF TEST