

The John Lyon School

2011 Entrance Examination at 13+

MATHEMATICS

January 2011

Time allowed – 60 minutes

100 Marks

SURNAME:	FIRST NAME:
SCHOOL:	DATE OF BIRTH:

- Calculators may <u>NOT</u> be used.
- Make sure you have attempted to answer all the questions in <u>Part A</u> before attempting <u>Part B</u>.
- Work steadily through the exam doing as much as you can straight away.
- Then go back and try the more difficult questions.
- Write your answers in the spaces provided in this booklet.
- Show your working so it is clear how you obtained your answers.

Rectangle		All angles are right angles (90°). Opposite sides have the same length.
Square		All angles are right angles. All sides have the same length.
Parallelogram		Opposite sides have the same length.
Rhombus	<i></i>	Diagonals bisect at right angles. All sides have the same length.
Trapezium		One pair of parallel sides.
Kite	\bigcirc	Diagonals intersect at right angles.
Isosceles Triangle	\wedge	Two sides have the same length and the angles opposite these two sides are equal.
Equilateral Triangle	\overline{A}	All angles are 60°.

1	Solve the following equations.	
1	a) $4x = 12$	
	b) $15 + x = 20$	
	c) $x + 7 = 22$	
	d) $2x + 1 = 11$	
	e) $5x - 9 = 26$	
	f) $\frac{x}{2} + 3 = 4$	
	g) x + 6 = 5	
	h) $2(5x+3) = 12x - 3$	
		Marks)

2	State whether each of the following statements is true or false. You can use the table at the beginning of this paper to help you.					
		i to neip you.				
	a) A square is also a rhombus.					
	b) A square is also a kite.					
	c) A rectangle is also a kite.					
	d) A parallelogram is also a kite.					
	e) A rectangle is also a parallelogram.					
			(5 Marks)			
3	Calculate the perimeter of the shape below.					
			cm			
4	Put the correct sign, $\langle or = or \rangle$, into each sentence	2.	(2 Marks)			
	a) -72					
	b) 3 – 25					
	c) $3-5$ $4-6$					
			(3 Marks)			
5	One number is missing from the following sequent 1, 6, 11, , 21, 26, 31 a) Fill in the missing number.	ce:				
	b) Calculate the difference between successiv	e terms.				
	c) Determine the formula that generates the se	equence.				
			(4 Marks)			

9

On the isometric dots below, draw a cuboid with sides of lengths 4 cm, 3 cm and 2 cm.

•		•		•		•		•		•		•		•		•	
	•		•		•		•		•		•		•		•		
•		•		•		•		•		•		•		•		•	
	•		•		•		•		•		•		•		•		
•		•		•		·		•		•		•		•		•	
					•		•		•		•		•		•		
	•				•		•		•		•		•		•		
•		•		•		•		•		•		•		•		•	
	•		•		•		•		•		•		•		•		
•		•		•		•		•		•		•		•		•	
	•		•		•		•		•		•		•		•		
•		•		•		•		•		•		•		•		•	
						•				•		•		•		•	
	•		•		•		•		•		•		•		•		
•		•		•		•		•		•		·		•		•	
	•		•		•		•		•		•		•		•		
•		•		•		•		•		•		•		•		•	
			•		•		•		•		•		•		•		
					•		•		•		•		•		•		
				•		•		•		•		•		•		•	
	•		•		•		•		•		•		•		•		
•		•		•		•		•		•		·		•		•	
	•		•		•		•		•		·		•		•		
•	· .			•		•		•		•		•		•		•	
									-		-				-		
																(4 Marl	ks)
																`	/

14		2, y = -6 and z = -4. He calculates that $Q = \frac{1}{4}$. ula to decide which he used.
	Formula A	$Q = \frac{xy + yz}{xyz}$
	Formula B	$Q = \frac{yz - xy}{xyz}$
	Formula C	$Q = \frac{1}{x} - \frac{1}{z}$
	Formula D	$Q = \frac{1}{z} + \frac{1}{x}$
	Formula E	$Q = \frac{1}{x} + \frac{1}{y}$

.

(7 Marks)

Wolfgang Amadeus Mozart was born in Salzburg, Austria, on 27 January 1756 and died in Vienna on
5 December 1791. He is one of the best known composers in the history of western music.

He was a child prodigy and composed a large number of works, using every type of musical composition, and travelling to many countries to perform.

His works were numbered chronologically by a biologist, Ludwig Ritter von Kochel, whose catalogue was published in 1862. The following table lists some of Mozart's compositions, each denoted by a 'K' (Kochel) number.

Knumber	Date Completed	Age (Years)	Title
Ι	January 1762	6	Minuet
33	June 1766	10	Kyrie
65	January 1769		Dance Music
123	April 1770		Contredanse
176	December 1773		Dance Music
192	June 1774		Missa Brevis (Mass)
238	January 1776		Piano Concerto No. 6
271	January 1777		Piano Concerto No. 9
317	March 1779		Missa (Mass)
385	July 1782		Symphony No. 35 (Haffner)
425	November 1783		Symphony No. 36 (Linz)
470	April 1785		Andante for Strings
525	August 1787		Serenade (Eine Kleine Nachtmusik)
55I	August 1788		Symphony No. 41 (Jupiter)
588	January 1790		Opera (Cosi fan tutte)
620	September 1791		Opera (Die Zauberflote - The Magic Flute)
626	December 1791		Requiem

a) Complete the 'Age' Column.

b) Plot the data of age (x-axis) against K number (y-axis), and by eye, draw a line of best fit.

K Number 600 400 200 0 10 20 30 Åge

++++++									
Use	e the graph	to estin	nate Moz	art's age w	vhen he co	ompleted	the piano	concertos	
1) 2)) Est	K453 K491 imate how	many c	 compositio	ons he had	complete	d by the t	ime he w	as 30 year	s old.
1) 2)) Est	K453 K491 imate how 	many c	 compositio er for his	ons he had	complete	d by the t	ime he w n Christm	as 30 year as Day, 17	s old.
1) 2) Est Est Fin	K453 K491 imate how imate the F d the equat	many c C numb 	composition er for his your line i	ons he had quartet wh 	complete ich was f 	d by the t	ime he w n Christm	as 30 year as Day, 17	s old.
1) 2) Est Est Fin	K453 K491 imate how imate the F	many c C numb 	composition er for his your line i	ons he had quartet wh 	complete ich was f 	d by the t	ime he w n Christm	as 30 year as Day, 17	s old. 777.
1) 2) Est Est Fin	K453 K491 imate how imate the F d the equat l e) again. I	many c K numb tion of <u>y</u> Does it	composition er for his your line i give accu	ons he had quartet wh 	complete iich was f i y = mx + ers?	d by the t inished or - c. Use th	ime he w	as 30 year as Day, 17 on to answ	s old. 777.
1) 2) Est Est Fin	K453 K491 imate how imate the F d the equat l e) again. I	many c K numb tion of <u>y</u> Does it	composition er for his your line i give accu	ons he had quartet wh in the form rate answe	complete iich was f i y = mx + ers?	d by the t inished or - c. Use th	ime he w	as 30 year as Day, 17 on to answ	s old. 777.
1) 2) Est Est 	K453 K491 imate how imate the F d the equat l e) again. I	many c K numb tion of <u>y</u> Does it	composition er for his your line i give accu	ons he had quartet wh in the form rate answe	complete iich was f i y = mx + ers?	d by the t inished or - c. Use th	ime he w	as 30 year as Day, 17 on to answ	s old. 777.

(15 Marks)

<u>Part B</u>

Pascal's Triangle

This picture shows the first five lines of Pascal's triangle.

- Can you work out how it is made?

 - Complete the next four lines.

- Shade in the odd numbers. How are they arranged in the triangle?
- Predict how the next line would be shaded without calculating the numbers.
$\bigcirc \bigcirc $
- Investigate the totals of the numbers in each horizontal row. Is there a pattern? Can you predict the next total?