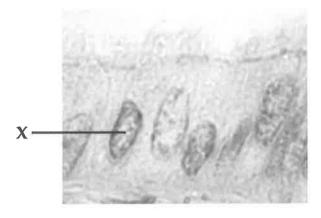


## Election

Tuesday 26 April 2016


Science

## **BIOLOGY**

THEORY SECTION

Recommended time: 20 minutes

Write all your answers in the spaces on this question paper



**Figure 1** A light micrograph of ciliated epithelium (T.S. rabbit oviduct), magnification 1000x.<sup>1</sup>

Structure X: .....

(a) **Figure 1** shows ciliated epithelium from a rabbit's oviduct seen using a light microscope. Name the structure labelled X and state its functions in these cells.

|     |                                                                   | [3] |
|-----|-------------------------------------------------------------------|-----|
| (b) | Most multicellular organisms begin life as a single cell that     |     |
|     | multiplies as the organism develops. This progenitor cell, from   |     |
|     | which all the other cells of an organism originate, passes on the |     |
|     | same set of genetic information to all of its descendants.        |     |
|     | Hypothesise how cells with the same genome can look very          |     |
|     | different and perform very different functions.                   |     |
|     |                                                                   |     |
|     | ***************************************                           |     |
|     |                                                                   |     |
|     |                                                                   |     |
|     |                                                                   | [2] |

| 2                                                                                                | (a)                                                           | Photosynthesis is a process that fixes inorganic carbon from the |  |  |  |
|--------------------------------------------------------------------------------------------------|---------------------------------------------------------------|------------------------------------------------------------------|--|--|--|
|                                                                                                  |                                                               | atmosphere into an organic molecule. Write a balanced symbol     |  |  |  |
|                                                                                                  |                                                               | equation for photosynthesis.                                     |  |  |  |
|                                                                                                  |                                                               | [1]                                                              |  |  |  |
|                                                                                                  | (b)                                                           | Chlorophyll is important in the harvesting of photons at the     |  |  |  |
|                                                                                                  |                                                               | beginning of photosynthesis. Name the metal ion in chlorophyll.  |  |  |  |
|                                                                                                  |                                                               | [1]                                                              |  |  |  |
| SE S                                                         |                                                               | ribosome inner membrane outer membrane circle of DNA             |  |  |  |
|                                                                                                  |                                                               | A 1 μm                                                           |  |  |  |
| Figure 2 Diagrams showing the structure of A) a chloroplast and B) a mitochondrion. <sup>2</sup> |                                                               |                                                                  |  |  |  |
|                                                                                                  | (c)                                                           | Figure 2 A) shows a chloroplast found in a palisade mesophyll    |  |  |  |
|                                                                                                  | cell. Explain why the internal membranes of a chloroplast are |                                                                  |  |  |  |
|                                                                                                  |                                                               | stacked into many layers.                                        |  |  |  |
|                                                                                                  |                                                               | ***************************************                          |  |  |  |

[2]

| (d) | The mitochondrion shown in Figure 2 B) is a similar size to the    |     |  |  |
|-----|--------------------------------------------------------------------|-----|--|--|
|     | chloroplast in Figure 2 A). State one similarity between these two |     |  |  |
|     | organelles other than size.                                        |     |  |  |
|     |                                                                    |     |  |  |
|     |                                                                    |     |  |  |
|     |                                                                    | [1] |  |  |
|     |                                                                    | [+] |  |  |
| (e) | Explain the global importance of photosynthesis.                   |     |  |  |
|     |                                                                    |     |  |  |
|     |                                                                    |     |  |  |
|     |                                                                    |     |  |  |
|     |                                                                    |     |  |  |
|     |                                                                    | [2] |  |  |
|     |                                                                    | [-] |  |  |



Figure 3 A plains zebra (Equus quagga).3

**Figure 3** shows the conspicuous pattern of stripes possessed by the plains zebra. A definitive explanation as to why zebras are striped has eluded scientists, resulting in several possible explanations.

| a) | Use your understanding of evolution to suggest how the zebra's |
|----|----------------------------------------------------------------|
|    | distinctive pattern could have arisen by natural selection.    |
|    |                                                                |
|    |                                                                |
|    |                                                                |
|    | ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~                         |
|    |                                                                |
|    | ***************************************                        |

The lion (*Panthera leo*) is a known predator of both the plains zebra and blue wildebeest (*Connochaetes taurinus*). To understand the impact of lion predation on both species scientists in South Africa's Kruger National Park studied the encounters between lions and their prey. Their observations, made over a four year period, are shown in **Table 3**.

|            | Number of encounters | Kill | Failure | No<br>attempt |
|------------|----------------------|------|---------|---------------|
| Wildebeest | 98                   | 14   | 46      | 38            |
| Zebra      | 140                  | 15   | 94      | 31            |

**Table 3** The vulnerability of wildebeest and zebra populations to lion predation.<sup>4</sup>

| (b) | Use the data presented in <b>Table 3</b> to explain if there is a difference |     |  |  |  |
|-----|------------------------------------------------------------------------------|-----|--|--|--|
|     | in the likelihood of a zebra or wildebeest being killed during a lion        |     |  |  |  |
|     | encounter.                                                                   |     |  |  |  |
|     |                                                                              |     |  |  |  |
|     |                                                                              |     |  |  |  |
|     |                                                                              |     |  |  |  |
|     |                                                                              | ro: |  |  |  |
|     |                                                                              | [2  |  |  |  |

| 4 | (a)        | An egg and a sperm are examples of specialised animal cells. State     |     |
|---|------------|------------------------------------------------------------------------|-----|
|   |            | one similarity and one difference between these two cell types.        |     |
|   |            |                                                                        |     |
|   |            |                                                                        |     |
|   |            |                                                                        | [2] |
|   | (b)        | Explain how an egg and a sperm are adapted for their respective        |     |
|   |            | functions.                                                             |     |
|   |            |                                                                        |     |
|   |            |                                                                        |     |
|   |            |                                                                        |     |
|   |            | ***************************************                                | [0] |
|   | <i>(</i> ) |                                                                        | [2] |
|   | (c)        | Describe the process of fertilisation.                                 |     |
|   |            |                                                                        |     |
|   |            | ······                                                                 |     |
|   |            |                                                                        | [2] |
|   | (d)        | State one way in which fertilisation in flowering plants is similar to |     |
|   |            | fertilisation in animals.                                              |     |
|   |            |                                                                        |     |
|   |            |                                                                        |     |
|   |            |                                                                        | [1] |
|   | (e)        | State one way in which fertilisation in flowering plants differs       |     |
|   |            | from fertilisation in animals.                                         |     |
|   |            |                                                                        |     |
|   |            |                                                                        |     |
|   |            |                                                                        | [1] |
|   |            |                                                                        |     |

## **Images**

- 1. Ciliated epithelium. Image taken by Dr A Savory, Winchester College.
- 2. Chloroplast and mitochondrion. Image drawn by Dr A Savory, Winchester College.
- 3. Plains zebra. Photo taken by Frederick Stourton (I, 2008-2013).
- 4. The vulnerability of wildebeest and zebra populations to lion predation. MGL Mills & TM Shenk (1992) Journal of Animal Ecology, 61(3); 693-702.

**End of this Section**