Simultaneous Equations Test

1. $\mathbf{3}$ bottles of oil and 1 bottle of milk have a total mass of $\mathbf{7 5 0} \mathbf{~ g . ~} 4$ bottles of oil and 1 bottle of milk have a total mass of 950 g . Work out the total mass of $\mathbf{2}$ bottles of oil and 2 bottles of milk.
A. $\quad 700 \mathrm{~g}$
B. 800 g
C. $\quad 750 \mathrm{~g}$
D. $\quad 850 \mathrm{~g}$
E. $\quad 650 \mathrm{~g}$

Let the mass of 1 bottle of oil be ' x ' and of 1 bottle of milk be ' y '.
$3 x+y=750 \quad \ldots$ equation (1)
$4 x+y=950 \quad \ldots$ equation (2)
Subtracting equation (1) from (2)

$$
\begin{array}{r}
4 x+y=950 \\
-\quad 3 x+y=750 \\
\hline x+0=200
\end{array}
$$

Using the value of $x=200$ in equation (1) we get,
$3 \times 200+y=750$
$600+y=750$
$y=750-600$
$y=150$

Mass of 2 bottles of oil and 2 bottles of milk $=2 x+2 y$

$$
\begin{aligned}
& =2 \times 200+2 \times 150 \\
& =400+300 \\
& =700 \mathrm{~g}
\end{aligned}
$$

Option A is correct.

2 Micheal has 24 coins of $\mathbf{1 0 p}$ and 50 p . The total value of the coins is $£ 4$. How many of each coin does he have?
A. $\quad 10$ and 14
B. $\quad 18$ and 6
C. 20 and 4
D. 22 and 2
E. $\quad 16$ and 6

Let the number of 10 p coins be ' x ' and 50 p coins be ' y '
Total number of coins $=24$
$x+y=24$ equation... (1)

Total value of 10 p coins $=10 x$
Total value of 50 p coins $=50 \mathrm{y}$
Total value of both 10 p and 50 p coins $=£ 4=4 \times 100 \mathrm{p}=400 \mathrm{p}$
$10 x+50 y=400 \quad$ equation... (2)

Multiplying equation... (1) by 10 ,
$10 \times(x+y=24)$
$10 x+10 y=240$ equation...(3)
Subtracting equation (2) from (3),

$$
\begin{aligned}
10 x+50 y & =400 \\
-10 x+10 y & =240 \\
\hline 40 y & =160 \\
y & =160 \div 40 \\
y & =4
\end{aligned}
$$

Using the value of $y=4$ in (1) we get,
$x+4=24$
$x=24-4$
$x=20$
Number of 10 p coins $=20$ and Number of 50 p coins $=4$
Option C is correct.

3 The rule to workout the next term in a sequence is: "Add the previous two terms together". The fourth term is 34 and the sixth term is $\mathbf{9 0}$. What are the first two terms of the sequence?
A. $\quad 10$ and 12
B. $\quad 11$ and 12
C. $\quad 12$ and 14
D. $\quad 10$ and 14
E. 8 and 12

Let the first term be ' x ' and the second term be ' y '
Using the condition,
Third term $=x+y$
Fourth term $=$ Second term + Third term $=y+(x+y)=x+2 y$
$x+2 y=34$ equation... (1)
Fifth term $=$ Third term + Fourth term $=(x+y)+34$
Sixth term $=$ Fourth term + Fifth term $=34+(x+y)+34$

$$
=68+x+y
$$

$68+x+y=90$
$x+y=90-68$
$x+y=22$ equation...
Subtracting equation (2) from (1)

$$
\begin{array}{r}
x+2 y=34 \\
-x+y=22 \\
\hline y=12
\end{array}
$$

Using the value of $y=12$ in equation (1) we get,
$x+2 \times 12=34$
$x+24=34$
$x=34-24$
$x=10$

First two terms are 10 and 12
Option A is correct.
4. Mary is thinking of two numbers. The sum of the two numbers is 136. The difference between the two numbers is 30 . What are the two numbers?
A. $\quad 73$ and 43
B. $\quad 73$ and 53
C. $\quad 93$ and 43
D. 83 and 53
E. $\quad 93$ and 63

Let the two numbers be ' x ' and ' y '.
$x+y=136$ equation... (1)
$x-y=30 \quad$ equation... (2)
Adding equations (1) and (2)

$$
\begin{aligned}
x+y & =136 \\
+x-y & =30 \\
\hline 2 x+0 & =166 \\
x & =166 \div 2 \\
x & =83
\end{aligned}
$$

Using the value of $x=83$ in equation (1) we get,
$83+y=136$
$y=136-83$
$y=53$
The two numbers are 83 and 53 .
Option D is correct.

5 Newton and Lebintiz's ages add to 51. In twelve years time, Newton will be one and a half times as old as Lebintiz. How old is Newton now?

Let the Newton's age be ' x ' and Lebintiz's age be ' y '.
$x+y=51$ equation... (1)
After 12 years, Newton's age $=x+12$

$$
\text { Lebintiz's age }=y+12
$$

Using the condition,
$x+12=1 \frac{1}{2} \times(y+12)$
$x+12=\frac{3}{2} \times(y+12)$
$2 \times(x+12)=3 \times(y+12)$
$2 x+24=3 y+36$
$2 x-3 y=12$ equation... (2)
Multiplying equation (1) by 2 ,
$2 \times(x+y=51)$
$2 x+2 y=102$ equation... (3)
Subtracting equation (2) from (3),

$$
\begin{aligned}
2 x+2 y & =102 \\
-2 x-3 y & =12 \\
\hline 5 y & =90 \\
y & =90 \div 5 \\
y & =18
\end{aligned}
$$

Using the value of $y=18$ in equation (1) we get,
$x+18=51$
$x=51-18$
$x=33$
Present age of Newton is 33 years.

6 On a farm there are only cows and people. If there are $\mathbf{2 0}$ heads and 70 legs, how many cows are there?

15

Let the number of people be ' x ' and number of cows be ' y ' Using the condition,
$x+y=20 \quad$ equation... (1)
Cows have 4 legs, humans have 2 legs.
Number of legs of people $=2 x$
Number of legs of cows $=4 x$
$2 x+4 y=70$ equation
Multiplying equation (1) by 2 ,
$2 \times(x+y=20)$
$2 x+2 y=40 \quad$ equation.
Subtracting equation (3) from (2),

$$
2 x+4 y=70
$$

$-2 x+2 y=40$

$$
\begin{aligned}
2 y & =30 \\
y & =30 \div 2 \\
y & =15
\end{aligned}
$$

There are 15 cows.

7 Daisy, Gilbert and Charles are cats. Daisy and Gilbert weigh 10 kg together. Gilbert and Charles weigh $12 \mathbf{k g}$ together. Charles and Daisy weigh 14 kg together.

$[A]$	$[B]$	$[C]$	$[D]$	$[E]$	$[F]$
8 kg	18 kg	2 kg	4 kg	16 kg	6 kg

a) How much does Daisy, Gilbert and Charles weigh altogether?

$$
18 \text { kg }
$$

Let Daisy's weight be ' x ', Gilbert's weight be ' y ' and Charles weight be ' z '.
$x+y=10$ equation... (1)
$y+z=12$ equation... (2)
$x+z=14$ equation... (3)
Adding equations (1), (2) and (3)
$x+y+y+z+x+z=10+12+14$
$2 x+2 y+2 z=36$
Dividing by 2
$x+y+z=18$ equation... (4)
Daisy, Gilbert and Charles together weigh 18 kg .
Option B is correct.
b) How much does Gilbert weigh?
$x+y+z=18$ from equation (4)
$y=18-(x+z)$
Using equation $(3), x+z=14$
$y=18-14$
$y=4$
Gilbert weigh 4 kg.
Option D is correct.

c) How much does Daisy weigh?

6 kg

$x+y=10$ from equation (1)
Using the value of $y=4$ in equation (1)
$x+4=10$
$x=10-4$
$x=6$
Daisy weigh 6 kg .
Option F is correct.

d) How much does Charles weigh?

$y+z=12$ from equation (2)
Using the value of $y=4$ in equation (1)
$4+z=12$
$z=12-4$
$z=8$
Charles weigh 8 kg .
Option A is correct.

83 apples and 4 pears cost 120p. 4 apples and 3 pears cost 125 p. What is the cost of a pear?

15p

Let the cost of one apple be ' x ' and the cost of one pear be ' y '.
$3 x+4 y=120$ equation ... (1)
$4 x+3 y=125$ equation ... (2)
Multiplying equation (1) by $3,3 \times(3 x+4 y=120)$

$$
\begin{equation*}
9 x+12 y=360 \text { equation } \tag{3}
\end{equation*}
$$

Multiplying equation (2) by $4,4 \times(4 x+3 y=125)$

$$
\begin{equation*}
16 x+12 y=500 \text { equation } \tag{4}
\end{equation*}
$$

Subtracting equation (3) from (4),

$$
\begin{aligned}
16 x+12 y & =500 \\
-\quad 9 x+12 y & =360 \\
\hline 7 x+0 & =140 \\
x & =140 \div 7 \\
x & =20
\end{aligned}
$$

Using the value of $x=20$ in equation (1)
$3 \times 20+4 y=120$
$60+4 y=120$
$4 y=120-60$
$4 y=60$
$y=60 \div 4$
$y=15$
Cost of one pear is 15 p.

9 Jason likes to eat lots of fruits. He finds that three kiwis and two watermelons cost $£ 2.20$ and that one watermelon and three mangoes cost $£ \mathbf{£ 3} \mathbf{2 0}$. How much would it cost if he bought one kiwi, one watermelon and one mango?

```
Let the cost of one Kiwi be ' \(x\) ', cost of one watermelon be ' \(y\) '
and the cost of one mango be ' \(z\) '
\(3 x+2 y=2.2\) equation... (1)
\(y+3 z=3.2\) equation... (2)
Adding equations (1) and (2)
\(3 x+2 y+y+3 z=2.2+3.2\)
\(3 x+3 y+3 z=5.4\)
Dividing by 3
\(\frac{3 x+3 y+3 z}{3}=\frac{5.4}{3}\)
\(x+y+z=1.8\)
Cost of one kiwi, one watermelon and one mango is \(£ 1.8\)
```

10 On the cards below, each star has the same value and each arrow \Rightarrow has the same value (but a different value to each star).
The number on each card is the total value of the symbols on that card. Find the value of one star $\tilde{\sim}$.

Let the value of one star be ' x ' and the value of one arrow be ' y ' Using the cards given,
$2 x+2 y=24$ equation... (1)
$4 x+y=33$ equation... (2)
Multiplying equation (2) by $2,2 \times(4 x+y=33)$

$$
8 x+2 y=66 \text { equation...(3) }
$$

Subtracting equation (2) from (3),

$$
\begin{aligned}
8 x+2 y & =66 \\
-2 x+2 y & =24 \\
\hline 6 x+0 & =42 \\
x & =42 \div 6 \\
x & =7
\end{aligned}
$$

The value of one star is 7 .

CHALLENGING QUESTION

Question:

$$
\begin{array}{lllll}
\boldsymbol{J} & \boldsymbol{J} \quad \& & \& & =£ 20 \\
\& & \& & b & b & =£ 14 \\
b & b & \mathcal{J} & \boldsymbol{J}=£ 18
\end{array}
$$

Using the totals given, can you calculate the price of each of the three shapes?

$$
\begin{align*}
\boldsymbol{J}+\boldsymbol{J}+\oint+\oint & =20 \\
2 \boldsymbol{J}+2 \oint & =20 \tag{1}
\end{align*}
$$

Dividing by 2 , $\boldsymbol{J}+\oint=10$ equation
$\oint+\oint+b+b=14$

$$
2 \oint+2 b=14
$$

Dividing by $2, \quad \oint+b=7$ equation... (2)
$b+b+\boldsymbol{J}+\boldsymbol{J}=18$

$$
2 b+2 \sqrt{J}=18
$$

Dividing by $2, b+\boldsymbol{J}=9$ equation... (3)

$$
\boldsymbol{J}=9-b \quad \text { equation... }
$$

Using value of $\boldsymbol{\Omega}=9-b$ in equation (1)
$9-b+\oint=10$
$\oint=1+b \quad$ equation (5)
Using value of $\oint=1+b$ in equation (2)
$1+b+b=7$

$$
\begin{aligned}
2 b & =6 \\
b & =3
\end{aligned}
$$

Using value of $b=3$ in equation (4)
J $=9-3$
$ゐ=6$
Using value of $b=3$ in equation (5)
$\oint=1+3$
$\xi=4$

